МИТОХОНДРИИ: различия между версиями

 
 
Строка 1: Строка 1:
'''МИТОХОНДРИИ''' (''mitochondria''; греч, mitos нить + chondrion зернышко) — органоиды, присутствующие в цитоплазме клеток животных и растительных организмов. М. принимают участие в процессах дыхания и окислительного фосфорилирования, продуцируют энергию, необходимую для функционирования клетки, представляя, таким образом, ее «силовые станции».
+
'''МИТОХОНДРИИ''' (''mitochondria''; греч, mitos нить + chondrion зернышко) — органоиды, присутствующие в цитоплазме клеток животных и растительных организмов. Митохондрии принимают участие в процессах дыхания и окислительного фосфорилирования, продуцируют энергию, необходимую для функционирования клетки, представляя, таким образом, ее «силовые станции».
  
 
Термин «митохондрии» был предложен в 1894 г. Бендой (С. Benda). В середине 30-х гг. 20 в. удалось впервые выделить М. из клеток печени, что позволило исследовать эти структуры биохим, методами. В 1948 г. Хогебумом (G. Hogeboom) были получены окончательные доказательства того, что М. действительно являются центрами клеточного дыхания. Значительные успехи в изучении этих органоидов были сделаны в 60—70 гг. в связи с применением методов электронной микроскопии и молекулярной биологии.
 
Термин «митохондрии» был предложен в 1894 г. Бендой (С. Benda). В середине 30-х гг. 20 в. удалось впервые выделить М. из клеток печени, что позволило исследовать эти структуры биохим, методами. В 1948 г. Хогебумом (G. Hogeboom) были получены окончательные доказательства того, что М. действительно являются центрами клеточного дыхания. Значительные успехи в изучении этих органоидов были сделаны в 60—70 гг. в связи с применением методов электронной микроскопии и молекулярной биологии.
 +
 
[[Файл: mitochondria 1.jpg|мини|left|alt=Рис. 1. Электронограммы различных форм митохондрий из клетки поджелудочной железы крысы: а — удлиненная митохондрия; б — округлая митохондрия; X 38 000.|Рис. 1. Электронограммы различных форм митохондрий из клетки поджелудочной железы крысы: а — удлиненная митохондрия; б — округлая митохондрия; X 38 000.]]
 
[[Файл: mitochondria 1.jpg|мини|left|alt=Рис. 1. Электронограммы различных форм митохондрий из клетки поджелудочной железы крысы: а — удлиненная митохондрия; б — округлая митохондрия; X 38 000.|Рис. 1. Электронограммы различных форм митохондрий из клетки поджелудочной железы крысы: а — удлиненная митохондрия; б — округлая митохондрия; X 38 000.]]
 +
 
Форма М. варьирует от почти круглых до сильно вытянутых, имеющих вид нитей (рис. 1), Размер их колеблется от 0,1 до 7 мкм. Количество М. в клетке зависит от типа ткани и функционального состояния организма. Так, в сперматозоидах число М. невелико — ок. 20 (на клетку), в клетках эпителия почечных канальцев млекопитающих их содержится до 300 в каждой, а у гигантской амебы (Chaos chaos) обнаружено 500 000 митохондрий, В одной клетке печени крысы ок. 3000 М., однако в процессе голодания животного число М. может сократиться до 700. Обычно М. распределяются в цитоплазме достаточно равномерно, однако в клетках нек-рых тканей М. могут быть постоянно локализованы в участках, особенно нуждающихся в энергии. Напр., в скелетной мышце М. часто находятся в контакте с контрактильными участками миофибрилл, образуя правильные трехмерные структуры. В сперматозоидах М. образуют спиральный футляр вокруг осевой нити хвоста, что, вероятно, связано с возможностью использовать энергию АТФ, синтезируемую в М., для движений хвоста. В аксонах М. концентрируются вблизи синаптических окончаний, где происходит процесс передачи нервных импульсов, сопровождающийся энергозатратой. В клетках эпителия почечных канальцев М. связаны с выпячиваниями базальной клеточной мембраны. Это вызвано необходимостью постоянного и интенсивного снабжения энергией процесса активного переноса воды и растворенных в ней веществ, протекающего в почках.
 
Форма М. варьирует от почти круглых до сильно вытянутых, имеющих вид нитей (рис. 1), Размер их колеблется от 0,1 до 7 мкм. Количество М. в клетке зависит от типа ткани и функционального состояния организма. Так, в сперматозоидах число М. невелико — ок. 20 (на клетку), в клетках эпителия почечных канальцев млекопитающих их содержится до 300 в каждой, а у гигантской амебы (Chaos chaos) обнаружено 500 000 митохондрий, В одной клетке печени крысы ок. 3000 М., однако в процессе голодания животного число М. может сократиться до 700. Обычно М. распределяются в цитоплазме достаточно равномерно, однако в клетках нек-рых тканей М. могут быть постоянно локализованы в участках, особенно нуждающихся в энергии. Напр., в скелетной мышце М. часто находятся в контакте с контрактильными участками миофибрилл, образуя правильные трехмерные структуры. В сперматозоидах М. образуют спиральный футляр вокруг осевой нити хвоста, что, вероятно, связано с возможностью использовать энергию АТФ, синтезируемую в М., для движений хвоста. В аксонах М. концентрируются вблизи синаптических окончаний, где происходит процесс передачи нервных импульсов, сопровождающийся энергозатратой. В клетках эпителия почечных канальцев М. связаны с выпячиваниями базальной клеточной мембраны. Это вызвано необходимостью постоянного и интенсивного снабжения энергией процесса активного переноса воды и растворенных в ней веществ, протекающего в почках.
 
[[Файл: mitochondria 2.png|мини|alt=Рис. 2. Схема ультраструктуры митохондрии: а —трехмерное изображение митохондрии; б — тонкое строение митохондриальной кристы (соответствует участку, заключенному в рамку на рисунке a): 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — гранулы, содержащие ионы кальция и магния; 5 — кристы; 6 — F1-частицы; 7 — пространство между мембранами; молекулы белка (8) и липидов (9), образующие мембрану; 10 —цепи дыхательных ферментов, расположенные на наружной стороне внутренней мембраны.|Рис. 2. Схема ультраструктуры митохондрии: а —трехмерное изображение митохондрии; б — тонкое строение митохондриальной кристы (соответствует участку, заключенному в рамку на рисунке a): 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — гранулы, содержащие ионы кальция и магния; 5 — кристы; 6 — F1-частицы; 7 — пространство между мембранами; молекулы белка (8) и липидов (9), образующие мембрану; 10 —цепи дыхательных ферментов, расположенные на наружной стороне внутренней мембраны.]]
 
[[Файл: mitochondria 2.png|мини|alt=Рис. 2. Схема ультраструктуры митохондрии: а —трехмерное изображение митохондрии; б — тонкое строение митохондриальной кристы (соответствует участку, заключенному в рамку на рисунке a): 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — гранулы, содержащие ионы кальция и магния; 5 — кристы; 6 — F1-частицы; 7 — пространство между мембранами; молекулы белка (8) и липидов (9), образующие мембрану; 10 —цепи дыхательных ферментов, расположенные на наружной стороне внутренней мембраны.|Рис. 2. Схема ультраструктуры митохондрии: а —трехмерное изображение митохондрии; б — тонкое строение митохондриальной кристы (соответствует участку, заключенному в рамку на рисунке a): 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — гранулы, содержащие ионы кальция и магния; 5 — кристы; 6 — F1-частицы; 7 — пространство между мембранами; молекулы белка (8) и липидов (9), образующие мембрану; 10 —цепи дыхательных ферментов, расположенные на наружной стороне внутренней мембраны.]]
Строка 34: Строка 36:
  
  
'''Библиография:''' Гаузе Г. Г. Митохондриальная ДНК, М., 1977,библиогр.; Д e P о-бертис Э., Новинский В. и С а э с Ф. Биология клетки, пер. с англ., М., 1973; Озернюк Н. Д. Рост и воспроизведение митохондрий, М., 1978, библиогр.; Поликар А. и Бесси М. Элементы патологии клетки, пер. с франц., М., 1970; РудинД. и Уилки Д. Биогенез митохондрий, пер. с англ., М., 1970, библиогр.; Серов В. В. и Пауков В. С. Ультраструктурная патология, М., 1975; С э д ж e р Р. Цитоплазматические гены и органеллы, пер. с англ., М., 1975.  
+
'''Библиография:'''  
 +
 
 +
[https://search.rsl.ru/ru/record/01007719802 Гаузе Г. Г. Митохондриальная ДНК, М., 1977, библиогр.];
 +
 
 +
Де Робертис Э., Новинский В. и Саэс Ф. Биология клетки, пер. с англ., М., 1973; Озернюк Н. Д. Рост и воспроизведение митохондрий, М., 1978, библиогр.; Поликар А. и Бесси М. Элементы патологии клетки, пер. с франц., М., 1970; Рудин Д. и Уилки Д. Биогенез митохондрий, пер. с англ., М., 1970, библиогр.; Серов В. В. и Пауков В. С. Ультраструктурная патология, М., 1975; Сэджер Р. Цитоплазматические гены и органеллы, пер. с англ., М., 1975.  
  
  
 
''Т. А. Залетаева.''
 
''Т. А. Залетаева.''
 
[[Category:Том 15]]
 
[[Category:Том 15]]

Текущая версия на 2019-10-07T19:49:28

МИТОХОНДРИИ (mitochondria; греч, mitos нить + chondrion зернышко) — органоиды, присутствующие в цитоплазме клеток животных и растительных организмов. Митохондрии принимают участие в процессах дыхания и окислительного фосфорилирования, продуцируют энергию, необходимую для функционирования клетки, представляя, таким образом, ее «силовые станции».

Термин «митохондрии» был предложен в 1894 г. Бендой (С. Benda). В середине 30-х гг. 20 в. удалось впервые выделить М. из клеток печени, что позволило исследовать эти структуры биохим, методами. В 1948 г. Хогебумом (G. Hogeboom) были получены окончательные доказательства того, что М. действительно являются центрами клеточного дыхания. Значительные успехи в изучении этих органоидов были сделаны в 60—70 гг. в связи с применением методов электронной микроскопии и молекулярной биологии.

Рис. 1. Электронограммы различных форм митохондрий из клетки поджелудочной железы крысы: а — удлиненная митохондрия; б — округлая митохондрия; X 38 000.
Рис. 1. Электронограммы различных форм митохондрий из клетки поджелудочной железы крысы: а — удлиненная митохондрия; б — округлая митохондрия; X 38 000.

Форма М. варьирует от почти круглых до сильно вытянутых, имеющих вид нитей (рис. 1), Размер их колеблется от 0,1 до 7 мкм. Количество М. в клетке зависит от типа ткани и функционального состояния организма. Так, в сперматозоидах число М. невелико — ок. 20 (на клетку), в клетках эпителия почечных канальцев млекопитающих их содержится до 300 в каждой, а у гигантской амебы (Chaos chaos) обнаружено 500 000 митохондрий, В одной клетке печени крысы ок. 3000 М., однако в процессе голодания животного число М. может сократиться до 700. Обычно М. распределяются в цитоплазме достаточно равномерно, однако в клетках нек-рых тканей М. могут быть постоянно локализованы в участках, особенно нуждающихся в энергии. Напр., в скелетной мышце М. часто находятся в контакте с контрактильными участками миофибрилл, образуя правильные трехмерные структуры. В сперматозоидах М. образуют спиральный футляр вокруг осевой нити хвоста, что, вероятно, связано с возможностью использовать энергию АТФ, синтезируемую в М., для движений хвоста. В аксонах М. концентрируются вблизи синаптических окончаний, где происходит процесс передачи нервных импульсов, сопровождающийся энергозатратой. В клетках эпителия почечных канальцев М. связаны с выпячиваниями базальной клеточной мембраны. Это вызвано необходимостью постоянного и интенсивного снабжения энергией процесса активного переноса воды и растворенных в ней веществ, протекающего в почках.

Рис. 2. Схема ультраструктуры митохондрии: а —трехмерное изображение митохондрии; б — тонкое строение митохондриальной кристы (соответствует участку, заключенному в рамку на рисунке a): 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — гранулы, содержащие ионы кальция и магния; 5 — кристы; 6 — F1-частицы; 7 — пространство между мембранами; молекулы белка (8) и липидов (9), образующие мембрану; 10 —цепи дыхательных ферментов, расположенные на наружной стороне внутренней мембраны.
Рис. 2. Схема ультраструктуры митохондрии: а —трехмерное изображение митохондрии; б — тонкое строение митохондриальной кристы (соответствует участку, заключенному в рамку на рисунке a): 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — матрикс; 4 — гранулы, содержащие ионы кальция и магния; 5 — кристы; 6 — F1-частицы; 7 — пространство между мембранами; молекулы белка (8) и липидов (9), образующие мембрану; 10 —цепи дыхательных ферментов, расположенные на наружной стороне внутренней мембраны.

Электронно-микроскопически установлено, что М. содержит две мембраны — наружную и внутреннюю. Толщина каждой мембраны ок. 6 нм, расстояние между ними — 6—8 нм. Наружная мембрана гладкая, внутренняя образует сложные выросты (кристы), вдающиеся в полость митохондрии (рис. 2). Внутреннее пространство М. носит название матрикса. Мембраны представляют собой пленку из компактно уложенных молекул белков и липидов, в то время как матрикс подобен гелю и содержит в своем составе растворимые белки, фосфаты и другие хим. соединения. Обычно матрикс выглядит гомогенным, лишь в нек-рых случаях в нем можно обнаружить тонкие нити, трубочки и гранулы, содержащие ионы кальция и магния.

Из особенностей строения внутренней мембраны необходимо отметить наличие в ней сферических частиц ок. 8—10 нм в поперечнике, сидящих на короткой ножке и иногда выступающих в матрикс. Эти частицы были открыты в 1962 г. Фернандес-Мораном (H. Fernandez-Moran). Они состоят из белка, обладающего АТФ-азной активностью, получившего обозначение F1. Белок прикрепляется к внутренней мембране только со стороны, обращенной к матриксу. Частицы F1 располагаются на расстоянии 10 нм друг от друга, а в каждой М. содержится 104—105, таких частиц.

В кристах и внутренних мембранах М. содержится большинство дыхательных ферментов (см.), дыхательные ферменты организованы в компактные ансамбли, распределенные с правильными промежутками в кристах М. на расстоянии 20 нм друг от друга.

М. почти всех типов клеток животных и растений построены по единому принципу, однако возможны отклонения в деталях. Так, кристы могут располагаться не только поперек длинной оси органоида, но и продольно, напр, в М. синаптической зоны аксона. В ряде случаев кристы могут ветвиться. В М. простейших организмов, нек-рых насекомых и в клетках клубочковой зоны надпочечников кристы имеют форму трубочек. Число крист различно; так, в М. клеток печени и половых клеток крист очень мало и они короткие, в то время как матрикс обилен; в М. мышечных клеток кристы многочисленны, а матрикса мало. Существует мнение, что число крист коррелирует с окислительной активностью М.

Во внутренней мембране М. осуществляются параллельно три процесса: окисление субстрата цикла Кребса (см. Трикарбоновых кислот цикл), перенос освободившихся при этом электронов и накопление энергии путем образования макроэргических связей аденозинтрифосфата (см. Аденозинфосфорные кислоты). Основной функцией М. является сопряжение синтеза АТФ (из АДФ и неорганического фосфора) и аэробного процесса окисления (см. Окисление биологическое). Накопленная в молекулах АТФ энергия может трансформироваться в механическую (в мышцах), электрическую (нервная система), осмотическую (почки) и т. д. Процессы аэробного дыхания (см. Окисление биологическое) и сопряженного с ним окислительного фосфорилирования (см.) являются основными функциями М. Кроме того, в наружной мембране М. может происходить окисление жирных к-т, фосфолипидов и нек-рых других соединений.

В 1963 г. Насс и Насс (М. Nass, S. Nass) установили, что в М. содержится ДНК (одна или несколько молекул). Все исследованные до сих пор митохондриальные ДНК из животных клеток состоят из ковалентно замкнутых колец диам. ок. 5 нм. У растений митохондриальная ДНК значительно длиннее и не всегда имеет форму кольца. Митохондриальная ДНК во многих отношениях отличается от ядерной. Репликация ДНК происходит при помощи обычного механизма, однако не совпадает во времени с репликацией ядерной ДНК. Количество генетической информации, заключенной в молекуле митохондриальной ДНК, по-видимому, недостаточно для кодирования всех белков и ферментов, содержащихся в М. Митохондриальные гены кодируют в основном структурные белки мембран и белки, участвующие в морфогенезе митохондрий. М. имеют свои транспортные РНК и синтетазы, содержат все компоненты, необходимые для синтеза белка; их рибосомы меньше цитоплазматических и более похожи на рибосомы бактерий.

Продолжительность жизни М. сравнительно невелика. Так, время обновления половины количества М. составляет для печени 9,6—10,2 сут., для почки — 12,4 сут. Пополнение популяции М. происходит, как правило, из предсуществующих (материнских) М. путем их деления или почкования.

Давно высказывалось предположение, что в процессе эволюции М. возникли, вероятно, путем эндосимбиоза примитивных ядросодержащих клеток с бактериоподобными организмами. Имеется большое число доказательств этому: наличие собственной ДНК, более сходной с ДНК бактерий, чем с ДНК ядра клетки; присутствие в М. рибосом; синтез ДНК-зависимой РНК; чувствительность митохондриальных белков к антибактериальному препарату — хлорамфениколу; сходство с бактериями в реализации дыхательной цепи; морфол., биохим, и физиол, различия между внутренней и наружной мембраной. Согласно симбиотической теории клетка-хозяин рассматривается как анаэробный организм, источником энергии для к-рого является гликолиз (протекающий в цитоплазме). В «симбионте» же реализуется цикл Кребса и дыхательная цепь; он способен к дыханию и окислительному фосфорилированию (см.).

М. являются весьма лабильными внутриклеточными органоидами, раньше других реагирующими на возникновение каких-либо патол, состояний. Возможны изменения числа М. в клетке (вернее, в их популяциях) или изменения их структуры. Напр., при голодании, действии ионизирующего облучения число М. уменьшается. Структурные изменения обычно состоят в набухании всего органоида, просветлении матрикса, разрушении крист, нарушении целостности наружной мембраны.

Набухание сопровождается значительным изменением объема М. В частности, при ишемии миокарда объем М. увеличивается в 10 раз и более. Различают два типа набухания: в одном случае оно связано с изменением осмотического давления внутри клетки, в других случаях — с изменениями клеточного дыхания, сопряженного с ферментативными реакциями и первичными функциональными расстройствами, вызывающими изменения водного обмена. Помимо набухания, может происходить вакуолизация М.

Независимо от причин, вызывающих патол, состояние (гипоксия, гиперфункция, интоксикация), изменения М. довольно стереотипны и неспецифичны.

Наблюдаются такие изменения структуры и функции М., к-рые, по-видимому, становились причиной возникновения болезни. В 1962 г. Луфт (R. Luft) описал случай «митохондриальной болезни». Больному с резко повышенной интенсивностью обмена веществ (при нормальной функции щитовидной железы) была сделана пункция скелетной мышцы и найдено повышенное число М., а также нарушение структуры крист. Дефектные митохондрии в клетках печени наблюдались и при выраженном тиреотоксикозе. Виноград (J. Vinograd) с сотр. (с 1937 по 1969) обнаружил, что у больных с определенными формами лейкемии митохондриальные ДНК из лейкоцитов заметно отличались от нормальных. Они представляли собой открытые кольца или группы сцепленных колец. Частота этих аномальных форм снижалась в результате химиотерапии.

См. также Клетка.



Библиография:

Гаузе Г. Г. Митохондриальная ДНК, М., 1977, библиогр.;

Де Робертис Э., Новинский В. и Саэс Ф. Биология клетки, пер. с англ., М., 1973; Озернюк Н. Д. Рост и воспроизведение митохондрий, М., 1978, библиогр.; Поликар А. и Бесси М. Элементы патологии клетки, пер. с франц., М., 1970; Рудин Д. и Уилки Д. Биогенез митохондрий, пер. с англ., М., 1970, библиогр.; Серов В. В. и Пауков В. С. Ультраструктурная патология, М., 1975; Сэджер Р. Цитоплазматические гены и органеллы, пер. с англ., М., 1975.



Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание