ХРОМОСОМЫ

ХРОМОСОМЫ (греческий chroma цвет, окраска + soma тело) — главные структурно-функциональные элементы клеточного ядра, содержащие расположенные в линейном порядке гены и обеспечивающие хранение, воспроизводство генетической информации, а также начальные этапы ее реализации в признаки; изменяют свою линейную структуру в клеточном цикле. Термин «хромосомы» предложен Вальдейером (W. Waldeyer) в 1888 году из-за палочковидной формы и интенсивного окрашивания этих элементов основными красителями в период деления клетки.

Термин «хромосома» в полном его значении применим к соответствующим ядерным структурам клеток многоклеточных эукариотных организмов (см.). В ядре таких клеток хромосом всегда несколько, они составляют хромосомный набор (см.). В соматических клетках хромосомы парны, так как происходят от двух родительских (диплоидный набор хромосом), в зрелых половых клетках содержится одинарный (гаплоидный) набор хромосом. Каждый биологический вид характеризуется постоянным числом, размерами и другими морфологическими признаками хромосом (см. Кариотип). У разнополых организмов хромосомный набор включает две хромосомы, несущие гены, определяющие пол особи (см. Ген, Пол), которые называют половыми, или гоносомами, в противоположность всем остальным, именуемым аутосомами. У человека пара половых хромосом составлена: у женщин из двух X-хромосом (XX набор), а у мужчин — из X и Y-хромосом (XY набор). Поэтому в зрелых половых клетках — гаметах у женщин содержится только X-хромосома, тогда как у мужчин половина сперматозоидов содержит Х-хромосому, а другая — Y-хромосому.

История

Первые наблюдения хромосом в ядре клетки, выполненные в 70-х годах 19 века И. Д. Чистяковым, О. Гертвигом, Страсбургером (E. Strasburger), положили начало цитологическому направлению в изучении хромосом. До начала 20 века это направление было единственным. Применение светового микроскопа позволило получить сведения о поведении хромосом в митотическом и мейотическом делениях (см. Мейоз, Митоз), факты о постоянстве числа хромосом у данного вида, специальных типах хромосом. В 20—40-х годах 20 века преимущественное развитие получило сравнительное морфологическое изучение хромосом у разных видов организмов, включая человека, с целью выяснения общих принципов их организации, особенностей индивидуальных хромосом и изменений их в процессе эволюции. В изучение этой проблемы особый вклад внесли отечественные ученые С. Г. Навашин, Г. А. Левитский, Л. Н. Делоне, П. И. Живаго, А. Г. Андрес, М. С. Навашин, А. А. П рокофъева-Бельговская, а также зарубежные — Хейтц (E. Heitz), Дарлингтон (С. D. Darlington) и др. С 50-х годов для исследования хромосом стал использоваться электронный микроскоп. Началось изучение морфологических изменений хромосом в процессе их генетического функционирования. В 1956 году Тио (H. J. Tjio) и Леван (A. Levan) окончательно установили число хромосом у человека, равное 46, описали их морфологические признаки в метафазе митоза. Значительный прогресс в изучении хромосом был достигнут в 70-х годах после разработки различных методов их окраски, позволивших выявить неоднородность структуры хромосом по длине в мета фазе деления клеток.

Сопоставление поведения хромосом в мейотическом делении с закономерностями наследования признаков (см. Менделя законы) положило начало цитогенетическим исследованиям. В конце 19 — начале 20 века Сеттоном (W. Sutton), Бовери (Th. Boveri), Уилсоном (Е. В. Wilson) были заложены основы хромосомной теории наследственности (см.), согласно которой гены локализованы в хромосомах и поведение последних при созревании гамет и их слиянии в момент оплодотворения объясняет законы передачи признаков в поколениях. Теория получила окончательное обоснование в цитогенетических экспериментах, проведенных на дрозофиле (см.) Т. Морганом и его учениками, которые доказали, что каждая хромосома есть группа генов, сцепленно наследуемых и расположенных в линейном порядке, что в мейозе осуществляется рекомбинация генов (см. Рекомбинация) гомологичных (идентичных) хромосом.

Изучение биохимической природы хромосом, начатое в 30—40-е годы 20 века, первоначально основывалось на цитохимическом качественном и количественном определении содержания ДНК, РНК и белков в ядре. С 50-х годов для этих целей стали применять фото- и спектрометрию (см. Спектрофотометрия), рентгеноструктурный анализ (см.) и другие физико-химические методы.

Физико-химическая природа хромосом

Физико-химическая природа хромосом зависит от сложности организации биологического вида. Хромосома эукариот состоит из молекулы дезоксирибонуклеиновой кислоты (см.), гистоновых и негистоновых белков (см. Гистоны), а также рибонуклеиновой кислоты (см.). Основным химическим компонентом хромосомы, заключающим в структуре своей молекулы генетическую информацию, является ДНК. В естественных условиях в отдельных участках хромосомы ДНК может быть свободной от структурных белков, однако в основном она существует в виде комплекса с гистонами, причем как и в интерфазе, так и в метафазе весовое отношение ДНК/гистон составляет единицу. Содержание кислых белков в хромосомах варьирует в зависимости от их активности и степени конденсации в клеточном цикле. В хроматине (см.) интерфазного ядра и на любой стадии митотической конденсации ДНК существует в комплексе с гистонами, и взаимодействие именно этих молекул создает элементарные структурные частицы хроматина — нуклеосомы. В нуклеосоме ее центральную часть составляют 8 молекул гистонов четырех типов (по 2 молекулы от каждого типа). Это гистоны Н2А, Н2В, НЗ и Н4, взаимодействующие между собой, по-видимому, С-концевыми участками молекул. N-концевые участки гистоновых молекул взаимодействуют с молекулой ДНК таким образом, что последняя оказывается накрученной на гистоновый остов, делая два витка на одной его стороне и один на другой. На одну нуклеосому приходится около 140 пар оснований ДНК. Между соседними нуклеосомами имеется варьирующий по длине отрезок ДНК (10—70 пар оснований). Когда он выпрямлен, ДНК принимает вид нити с бусинками. Если отрезок находится в сложенном состоянии, нуклеосомы тесно прилегают друг к другу, формируя фибриллу диаметром 10 нм. Строение из нуклеосомных частиц является принципом организации хроматина (см.) как в интерфазной, так и в метафазной хромосоме.

В геноме эукариот (см. Геном) выделяют несколько классов ДНК по числу повторяющихся последовательностей нуклеотидов, составу последовательностей, их размерам. У человека ДНК может быть подразделена на ДНК с многократно повторяющимися последовательностями нуклеотидов, включая сателлитную ДНК (ок. 10,3%), ДНК с умеренно повторяющимися последовательностями (ок. 12,3%), ДНК с низкой их повторяемостью (13,4%), а также ДНК, состоящую из уникальных последовательностей (около 64%). У человека четыре основных типа сателлитных ДНК локализуются в большинстве хромосом, но неодинаково распределяются по типам и количеству. ДНК с многократно повторяющимися последовательностями содержится преимущественно в гетерохроматине (сильно спирализованных и интенсивно окрашенных районах хромосомы). На поперечник хромосомы при ее максимальной деконденсации приходится одна молекула ДНК. В метафазной хромосоме составляющая ее молекула ДНК должна укоротиться в 104 раз по сравнению с ее длиной в свободном от белков состоянии. Взаимодействие ДНК с гистонами при формировании нуклеосом и нити диаметром 10 нм обеспечивает укорочение исходной нити ДНК примерно в 6,5—7 раз и увеличение диаметра с 3 нм до 10 нм. В нативном хроматине преобладают нити второго порядка диаметром 20—30 нм, в фибриллах этого уровня общее укорочение ДНК оказывается примерно 40-кратным.

ДНК с умеренным числом повторов обнаруживается главным образом в G-окрашивающихся сегментах. С помощью флюорохромов (см.), по-разному связывающихся с аденинтимин и гуанинцитозин парами оснований ДНК, показано различие участков метафазной хромосомы по составу оснований. Специфичность ДНК в разных участках хромосом, вероятно, определяет их различие по генетической активности.

Структурно-функциональная организация хромосом

Функциями хромосом являются: хранение генов — носителей генетической информации, заключенной в молекулярной структуре ДНК (см. Ген, Дезоксирибонуклеиновые кислоты); самовоспроизведение генетической информации (см. Репликация, Репродукция хромосом); передача генетической информации для реализации в признак (см. Рибонуклеиновые кислоты, Транскрипция); рекомбинация сцепленных генов между гомологичными хромосомами в гаметогенезе, обеспечивающая рекомбинацию признаков родителей в потомстве (см. Мейоз, Рекомбинация, хромосом); обратимое изменение структур хромосом (конденсация — деконденсация), необходимое для дифференциальной активности генов и правильного распределения хромосом в дочерних клетках во время деления (см. Ген, Митоз); изменение числа групп сцепленных генов и порядка их сцепления как важный фактор изменчивости биол. видов в их эволюции (см. Мутация). Функционирование хромосом тесно связано с преобразованиями их структуры. Взаимодействие структуры и функции имеет свои особенности на разных уровнях организации хромосом.

На светооптическом микроскопическом уровне морфология хромосом различна в отдельные моменты их преобразований, к-рые являются частью клеточного цикла и состоят гл. обр. в конденсации хромосом на пути к митозу или мейозу и деконденсации при переходе к интерфазе.

В интерфазе хромосомы максимально деконденсированы, индивидуально неразличимы и занимают весь объем ядра, образуя так наз. хроматин (см.). Плотность хроматина в разных участках ядра обычно неодинакова — слабо окрашенные основными красителями участки перемежаются с интенсивно окрашенными. Сопоставление по-разному окрашенных участков интерфазного хроматина с морфологией индивидуальных хромосом при их митотической конденсации и деконденсации позволило выделить два типа хроматина — эухроматин и гетерохроматин. Топография гетерохроматиновых сегментов в интерфазном ядре свидетельствует в пользу упорядоченности расположения в нем хромосом, их связи с ядерной мембраной. Морфология хромосом связана с их репродукцией и поэтому различается в разные фазы клеточного цикла. Судить об этом удается с помощью индукции конденсации хромосом ядра клетки в интерфазе. В G1-фазе интерфазные хромосомы однонитчаты (однохроматидны). В G2-фазе, когда репродукция завершена, все хромосомы состоят из двух хроматид на всем протяжении.

Рис. 1. Участок политенной хромосомы с дисковой структурой (а) и образованием пуфа (б). Схема иллюстрирует возникновение пуфа путем деконденсации четырех хроматиновых нитей, уложенных в хромомере (в).

Одна из основных функций хромосом — считывание генетической информации — также осуществляется в интерфазе. Особенности морфологии хромосом в этот момент недоступны для исследования на интерфазных ядрах диплоидных клеток, но их удалось исследовать на политенных хромосомах (греческий poly много + tainia лента, полоса) — интерфазных хромосом, обнаруженных главным образом в клетках слюнных желез личинок некоторых видов отряда двукрылых насекомых и состоящих из многократно редуплицированных и неразошедшихся исходных хроматид, тесно прилегающих друг к другу. В световом микроскопе они выглядят в виде лент, поперечно исчерченных из-за чередования по всей длине интенсивно окрашенных участков (дисков) и светлых (междисковых) пространств (рис. 1 ,а). Диск представляет собой участок плотно сложенной хроматиновой нити (хромомера). Для каждой хромосомы данного биол. вида число, размеры и топография дисков строго определенны. Хромомера политенной хромосомы содержит один или более генов в неактивном состоянии. Наблюдается попеременное набухание и разрыхление дисков — образование так наз. пуфов (рис. 1,6). Гигантские пуфы нек-рых специфических дисков названы кольцами Бальбиани. Процесс образования пуфов представляет собой деконденсацию хроматиновых нитей, упакованных в диске (рис. 1,в) и является обратимым. В цитогенетике появление пуфов рассматривается в качестве морфологического выражения транскрипционной активности генов (см.Транскрипция).

Индивидуально различимые хромосомы формируются ко времени клеточного деления, митоза или мейоза, в результате прогрессивно нарастающей конденсации хромосом. В профазе митотического деления хромосомы видны в световом микроскопе в виде длинных и переплетенных нитей, поэтому индивидуальные хромосомы на всем протяжении неразличимы. В профазе первого мейотического деления хромосомы претерпевают сложные специфические морфологические преобразования, связанные главным образом с конъюгацией гомологичных хромосом (см. Конъюгация хромосом) и генетической рекомбинацией (обменом участками) между ними. В пахитене (когда заканчивается конъюгация) особенно показательно чередование хромомер по длине хромосом, причем хромомерный рисунок специфичен для каждой хромосомы и меняется по мере конденсации. Многие хромосомы в оогенезе и Y-хромосома в сперматогенезе обладают высокой транскрипционной активностью. У некоторых видов организмов такие хромосомы получили название «ламповых щеток». Они состоят из оси, построенной из хромомер и межхромомерных участков, и многочисленных боковых петель — деконденсированных хромомер, находящихся в состоянии генетического функционирования (транскрипции).

Рис. 2. Схема хромосомы в метафазе деления клетки: 1 — спутник; 2 — вторичная спутничная перетяжка; 3 — первичная (центромерная) перетяжка; 4 — вторичная неспутничная перетяжка; 5 — сестринские хроматиды.
Рис. 3. Хромосомный набор человека в метафазе деления клетки: 1 — акроцентрическая хромосома со спутником в коротком плече; 2 — метацентрическая хромосома; 3 — субметацентрическая хромосома с вторичной перетяжкой в околоцентромерном районе длинного плеча.

В метафазе деления клетки хромосомы имеют наименьшую длину и их легко исследовать, поэтому описание индивидуальных хромосом, как и всего их набора в клетке, дают применительно к их состоянию в этой фазе. Размеры метафазных хромосом у одного и того же вида организмов сильно различаются: хромосомы размерами в доли микрона имеют точечный вид, при длине более 1 мкм они выглядят как палочковидные тела. Обычно это раздвоенные по длине образования, состоящие из двух сестринских хроматид (рис. 2, 3), поскольку в метафазе хромосомы редуплицированы.

Индивидуальные хромосомы набора различаются между собой по длине и другим морфологическим признакам. Методы, применявшиеся до 70-х годов, обеспечивали равномерное окрашивание хромосомы по ее длине. Тем не менее такая хромосома в качестве обязательного элемента структуры имеет первичную перетяжку — участок, где обе хроматиды сужаются, видимо не отделяясь одна от другой, и плохо окрашиваются. Этот район хромосомы называется центромерой, он содержит специализированную структуру — кинетохор, который участвует в формировании нитей веретена деления хромосом. По соотношению размеров лежащих по обе стороны от первичной перетяжки хромосомных плеч хромосомы подразделяются на три типа: метацентрические (со срединно расположенной перетяжкой), субметацентрические (перетяжка смещена от середины), акроцентрические (центромера расположена близко к концу хромосомы, рис. 3). У человека имеются все три типа хромосом. Концы хромосом называют теломерами. По длине хромосом с той или иной степенью постоянства могут встречаться не имеющие отношения к центромере, так называемые вторичные перетяжки. Если они располагаются близко к теломере, отделяемый перетяжкой дистальный участок хромосомы называют спутником, а перетяжку — спутничной (рис. 2). У человека десять со вторичной перетяжкой хромосом, все они являются акроцентрическими, спутники локализованы в коротком плече. Некоторые вторичные перетяжки содержат рибосомные гены и называются ядрышкообразующими, поскольку благодаря их функционированию в продукции РНК в интерфазном ядре формируется ядрышко (см.). Другие вторичные перетяжки образуются гетерохроматиновыми районами хромосом; у человека из таких перетяжек наиболее выражены околоцентромерные перетяжки в 1, 9 и 16-й хромосомах.

Рис. 4. Хромосома 1 человека при разных способах окраски: а — сплошная окраска; б — Q-окраска; в — G-окраска; г — R-окраска; д — рисунок последовательности репликации ДНК, выявляемый с помощью 5-бромдезоксиуридина; е — С-окраска; ж — схема дифференцированности хромосомы по длине.

Первоначальный метод использования красителя Гимзы и других хромосомных красителей давал равномерную окраску по всей длине хромосомы. С начала 70-х годов разработан ряд методов окраски и обработки метафазных хромосом, которые позволили обнаружить дифференцированность (деление на светлые и темные полосы) линейной структуры каждой хромосомы по всей ее длине: Q-окраска (Q — от английского quinacrine акрихин), получаемая с помощью акрихина, акрихиниприта и других флюорохромов; G-окраска (G — от фамилии Giemsa), получаемая с помощью красителя Гимзы (см. Романовского — Гимзы метод) после инкубации препаратов хромосом в специальных условиях; R-окраска (R — от англ. reverse обратный; хромосомы окрашиваются обратно G-окраске). Тело хромосомы оказывается подразделенным на сегменты разной интенсивности окрашивания или флюоресценции. Число, положение и размер таких сегментов специфичны для каждой хромосомы, поэтому любой хромосомный набор может быть идентифицирован. Другие методы позволяют дифференциально окрашивать отдельные специфические районы хромосом. Возможно избирательное окрашивание красителем Гимзы гетерохроматиновых районов хромосомы (С-окраска; С — от centromere центромера), располагающихся рядом с центромерой — С-сегментов (рис. 4). У человека С-сегменты обнаружены в околоцентромерном районе всех аутосом и длинном плече Y -хромосомы. Гетерохроматиновые районы варьируют по величине у разных индивидуумов, обусловливая полиморфизм хромосом (см. Хромосомный полиморфизм). Специфические окраски позволяют выявить в метафазных хромосомах функционировавшие в интерфазе ядрышкообразующие районы, а также кинетохоры.

На электронномикроскопическом уровне основной ультраструктурой единицей интерфазного хроматина при просвечивающей электронной микроскопии (см.) является нить диаметром 20—30 нм. Плотность упаковки нитей различна в участках плотного и диффузного хроматина.

Рис. 5. Электронограмма изолированной метафазной хромосомы в физиологических условиях; X 10000.

Метафазная хромосома на срезе в просвечивающем электронном микроскопе представляется равномерно заполненной фибриллами 20—30 нм в поперечнике, которые в зависимости от плоскости сечения имеют вид округлых, овальных или удлиненных образований. В профазе и телофазе в хромосоме можно обнаружить более толстые нити (до 300 нм). При электронной микроскопии поверхность метафазной хромосомы представлена хаотично уложенными многочисленными фибриллами разного диаметра, видимыми, как правило, на коротком отрезке (рис. 5). Преобладают нити диаметром 30—60 нм.

Изменчивость хромосом в онтогенезе и эволюции

Постоянство числа хромосом в хромосомном наборе и структуры каждой хромосомы — непременное условие нормального развития в онтогенезе (см.) и сохранения биол. вида. В течение жизни организма могут происходить изменения числа отдельных хромосом и даже их гаплоидных наборов (геномные мутации) или структуры хромосом (хромосомные мутации). Необычные варианты хромосом, обусловливающие уникальность хромосомного набора индивидуума, применяются в качестве генетических маркеров (маркерных хромосом). Геномные и хромосомные мутации играют важную роль в эволюции биол. видов. Данные, полученные при изучении хромосом, вносят большой вклад в систематику видов (кариосистематику). У животных одним из главных механизмов эволюционной изменчивости является изменение числа и структуры отдельных хромосом. Важное значение имеет также изменение содержания гетерохроматина в отдельных или нескольких хромосомах. Сравнительное изучение хромосом человека и современных человекообразных обезьян позволило на основании сходства и различия индивидуальных хромосом установить степень филогенетического родства этих видов и смоделировать кариотип их общего ближайшего предка.



Библиогр.: Босток К. и Самнер Э. Хромосома эукариотической клетки, пер. с англ., М., 1981; Бочко вН. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Дарлингтон С. Д. и Л а К у р Л. Ф. Хромосомы, Методы работы, пер. с англ., М., 1980, библиогр.; Захаров А. Ф. Хромосомы человека (проблемы линейной организации;, М., 1977, библиогр.; Захаров А. Ф. и др. Хромосомы человека, Атлас, М., 1982; К и к н а д з е И. И. Функциональная организация хромосом, Л., 1972, библиогр.; Основы цитогенетики человека, под ред. А. А. Прокофьевой-Бельговской, М., 1969: С у о н с о н К., M е р ц Т. и Я н г У. Цитогенетика, пер. с англ., М., 1969; Cell biology, A comprehensive treatise, ed. by L. Goldstein a. D. M. Prescott, p. 267, N. Y. a. o., 1979; S e u й n e z H. N, The phylogeny of human chromosomes, v. 2, B. a. o.\ 1979; S h a r m a A. K. a. S h a r-m a A. Chromosome techniques, L. a. o., 1980; ThermanE. Human chromosomes, N. Y. a. o., 1980.




Популярные статьи

Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание