ФОСФАТАЗЫ

ФОСФАТАЗЫ — ферменты, катализирующие расщепление сложноэфирных связей в моноэфирах фосфорной кислоты с образованием свободного ортофосфата; относятся к классу гидролаз, подклассу гидролаз фосфорных моноэфиров (КФ 3.1.3).

Ф. присутствуют во всех животных и растительных организмах и занимают важное место в клеточном метаболизме; биол. роль Ф. связана с их участием в обмене углеводов (см. Углеводный обмен), нуклеотидов (см. Нуклеиновые кислоты) и фосфолипидов (см. Фосфатиды), а также с образованием костной ткани (см. Кость). Изменение активности нек-рых Ф. в крови служит ценным диагностическим признаком при ряде заболеваний. Генетически обусловленное нарушение синтеза или ферментативной полноценности нек-рых Ф. является причиной тяжелого наследственного заболевания (см. Гипофосфатазия).

По характеру каталитического действия все Ф. представляют собой фосфомоноэстеразы, расщепляющие сложноэфирную связь гидролитичеспим путем. Систематическое название этих ферментов всегда включает термин «гидролаза» (наименование «фосфатазы» является рабочим, образованным от названия субстрата). Ф. могут рассматриваться как фосфотрансферазы (см.), поскольку способны катализировать перенос фосфатного остатка на молекулы других акцепторов, кроме воды, но т. к. вода является физиологически главным и самым активным акцептором, то фосфатазы причисляют к гидролазам (см.).

Субстратная специфичность

Большинство Ф. относится к числу ферментов (см.), имеющих сравнительно широкую субстратную специфичность. Однако нек-рые Ф. отличаются ограниченным кругом превращаемых субстратов. Это, в первую очередь, ферменты, действующие на фосфорные производные сахаров, а также нуклеотидазы (см.), расщепляющие мононуклеотиды. Во многих тканях Ф. представлены множественными формами, различающимися по своим каталитическим и физическим свойствам (см. Изоферменты). У фосфатаз из разных биол. источников также наблюдают различия в субстратной специфичности и каталитической активности. Нек-рые Ф. обнаруживают сходство с ферментами, относящимися к другим группам. Так, существуют Ф., способные катализировать реакции перефосфорилирования (см.) или расщеплять кислотно-ангидридную пирофосфатную связь (см. Пирофосфатазы). Напр., глюкозо-6-фосфатаза (D-глюкозо-б-фосфат фосфогидролаза; КФ 3.1.3.9) по субстратной специфичности и каталитическим свойствам весьма напоминает фосфотрансферазы (КФ 2.7.1.62 и 2.7.1.79), а также неорганическую пирофосфатазу (КФ 3.6.1.1).

Механизм действия

Для многих Ф. установлена трехмерная структура их молекул и предложены детальные хим. механизмы каталитического действия. Предполагают, что в процессе каталитического акта принимают кооперативное (сочетанное) участие несколько различных групп, локализованных на поверхности молекулы фермента в активном центре. Одной из таких Ф. является глюкозо-6-фосфатаза. Этот фермент, связанный с микросомной фракцией клеток, наряду с гидролизом глюкозо-6-фосфата катализирует перенос фосфатной группы от неорганического пирофосфата (см. Фосфор) на глюкозу (см.), а также реакцию обмена между глюкозой и глюкозо-6-фосфатом. Исследования кинетики гидролитической, трансфе-разной и обменной реакций (см. Кинетика биологических процессов) показали, что их механизм носит характер двухстадийного переноса, в к-ром в качестве промежуточного соединения (интермедиата) образуется фосфофермент, или фосфорил-фермент. При этом переносимая фосфатная группа в молекуле фермента связывается с остатком гистидина (см.). Для проявления активности глюкозо-б-фосфатазе необходим ион двухвалентного металла. В соответствии с предполагаемым (с долей известного упрощения) механизмом реакции ион металла связывается с отрицательно заряженной фосфатной группой субстрата, а реакционно-способный остаток гистидина, обладающий нуклеофильными свойствами,— с атомом фосфора, что и приводит к образованию фосфофермента. Последний затем либо подвергается гидролизу, либо взаимодействует с нуклеофильными группами акцепторных молекул (напр., с гидроксильными группами сахаров) с образованием конечных продуктов реакции и высвобождением свободного от фосфата фермента.

Не все фосфатазные реакции протекают с образованием промежуточного фосфофермента, в к-ром фосфо-рилирован остаток гистидина. Когда реакцию катализирует щелочная фосфатаза (КФ 3.1.3.1), выделенная из тканей млекопитающих или из бактерий, фосфорилированию в молекуле фермента подвергается остаток серина (см.). Фермент представляет собой цинксодержащий металлопротеид (см. Металлопротеиды), в к-ром 2—3 грамм-атома цинка приходятся на 1 моль белка. Ионы цинка или другого металла необходимы для проявления каталитической активности щелочной фосфатазы и, возможно, для стабилизации нативной структуры молекулы фермента. Двухвалентные катионы Со2+, Mg2+ и Mn2+ активируют Ф., выделенные из различных тканей, в то время как ионы Be2+ и комплексообразующие агенты (напр., ЭДТА) являются ингибиторами этих ферментов. Механизм действия щелочной фосфатазы сходен с тем механизмом, к-рый постулирован для глюкозо-6-фосфатазы, но атом фосфора взаимодействует не с гистидиновым, а с сериновым остатком молекулы фермента.

Для других фосфатаз, напр, для фруктозо-бисфосфатазы (КФ 3.1.3.11), данных об образовании фосфофермента пока нет. Возможно, что катализируемая ею ферментативная реакция протекает по одностадийному согласованному механизму, а не путем двухстадийного переноса.

Методы определения

Большинство способов определения активности Ф. основано на измерении количества неорганического фосфата (образующегося в результате реакции, катализируемой этими ферментами) с помощью различных колориметрических методов (см. Колориметрия), к-рые связаны с восстановлением фосфомолибденовой к-ты. Классическим способом определения активности Ф. является метод Боданского с использованием в качестве субстрата бета-глицерофосфата (см. Боданского метод). Часто на практике удобнее измерять количество фенола, высвободившегося из арил-фосфомоноэфира. Так, для определения активности щелочной фосфатазы в сыворотке крови широко применяют метод Кинга — Армстронга (см Кинга—Армстронга метод), основанный на том же принципе метод Дженнера — Кея или их модификации. Наиболее чувствительным методом определения активности щелочной фосфатазы в сыворотке крови является метод Бессея (см. Бессея методы). Для определения активности кислой фосфатазы широко применяют метод Гутман — Гутмана. Эти стандартные методы определения активности Ф. в сыворотке крови предусматривают использование в качестве субстратов моно-фосфорных эфиров фенола, n-нитрофенола, фенолфталеина или тимолфталеина. Образовавшиеся в результате реакции свободные фенолы (см.) определяют спектрофотометрически (см. Спектрофотометрия). Большой чувствительностью обладают методы измерения фосфатазной активности с применением флюоресцентных субстратов, таких как бета-нафтилфосфат и 3-О-метилфлюоресцеинфосфат (см. Флюорохромы). Следовые количества пирофосфата, меченного 32P, можно определить осаждением его молибдатом аммония и триэтиламином в присутствии немеченого носителя. Чувствительность этого радиоизотопного метода составляет ок. 3 нг.

Кислая и щелочная фосфатазы

Среди Ф. наиболее широко распространены и изучены две группы ферментов — щелочные и кислые фосфатазы. Обладая широкой субстратной специфичностью, эти ферменты заметно различаются по своим свойствам в зависимости от источника, из к-рого они выделены. Их субстратами могут быть различные моноэфиры ортофосфорной к-ты — как алифатические, напр, глицерол-1- и глицерол-2-фосфаты, так и ароматические, напр. 4-нитрофенилфосфат; в то же время эти ферменты неактивны в отношении ди- и три эфиров фосфорных кислот (см.). Большое различие между кислыми и щелочными Ф. наблюдают при их действии на серосодержащие эфиры. Щелочная фосфатаза гидролизует S-замещенные моноэфиры тиофосфорной к-ты, напр. цпстеамин-S-фосфат; для действия кислой фосфатазы, по-видимому, необходим кислород расщепляемой эфирной связи: кислая фосфатаза гидролизует О-замещенные моноэфиры тиофосфорной к-ты, напр. O-4-нитрофенилтнофосфат.

Щелочная фосфатаза (фосфомоноэстераза; КФ 3.1.3.1) проявляет максимальную активность при pH 8,4— 9,4 и катализирует гидролиз почти всех фосфомоноэфиров с образованием неорганического фосфата и соответствующего спирта, фенола, сахара и др. Щелочная фосфатаза содержится в большинстве тканей и жидкостей организма человека и животных, а также в растениях и микроорганизмах. У человека особенно высокая активность этого фермента отмечается в эпителии тонкой кишки, почках, костях, печени, лейкоцитах и др. Широко используемым источником щелочной фосфатазы является окостеневающий хрящ, что указывает на возможную роль этого фермента в процессах кальцификации костной ткани. Наличие активной щелочной фосфатазы характерно для тканей, связанных с транспортом питательных веществ, она часто присутствует в развивающихся тканях и секреторных органах. Щелочная фосфатаза практически отсутствует в мышцах, зрелой соединительной ткани и эритроцитах, этим ферментом бедны также стенки сосудов и гиалиновый хрящ.

Рис. Электрофоретическая подвижность щелочной фосфатазы, выделенной из печени, костной ткани, плаценты и кишечника человека: « + » и «—» — положение анода и катода, кружками изображены места нанесения раствора фермента, темные пятна — местоположение фермента после фиксации и окраски электрофореграммы.
Рис. Электрофоретическая подвижность щелочной фосфатазы, выделенной из печени, костной ткани, плаценты и кишечника человека: « + » и «—» — положение анода и катода, кружками изображены места нанесения раствора фермента, темные пятна — местоположение фермента после фиксации и окраски электрофореграммы.

Щелочная фосфатаза обладает чрезвычайно широким изоферментным спектром. С помощью иммуно-химических и электрофоретических методов было показано, что между ее изоферментами (см.) имеются выраженные физико-химические и каталитические различия. При электрофорезе в полиакриламидном геле щелочная фосфатаза, полученная из слизистой оболочки кишечника, остается вблизи места внесения р-ра фермента в гель (линии старта), а щелочная фосфатаза, выделенная из печени, движется в сторону анода вместе с фракцией ά1- или α2-глобулинов (рис.). Электрофоретическое разделение сывороточной щелочной фосфатазы при повышении ее активности дает возможность установить костное или печеночное происхождение фермента, выброс к-рого обусловил возросшую активность щелочной фосфатазы в крови. В сыворотке крови в норме основным источником щелочной фосфатазы является, по-видимому, печень. Появление изофермента, характерного для слизистой оболочки тонкой кишки, находится под генетическим контролем: есть данные, что его присутствие в крови характерно для людей с нулевой группой крови.

Распределение активности фермента даже в одном морфологическом образовании негомогенно. Так, активность щелочной фосфатазы различна в разных отделах кишечника, в корковом веществе почки она гораздо выше, чем в мозговом. На активность щелочной фосфатазы влияют гормональные факторы: активность фермента в крови снижается после гипофизэктомии, кастрации, а также в результате применения кортикостероидных препаратов. После введения тироксина активность фермента увеличивается. У человека различные факторы, вызывающие стресс, способствуют увеличению активности щелочной фосфатазы в лейкоцитах.

Активность щелочной фосфатазы в крови в нек-рой степени зависит от возраста и пола. У мужчин активность фермента в крови на 20—30% выше, чем у женщин, однако во время беременности у женщин происходит значительное (в 2—3 раза) повышение активности этой фосфатазы, что может объясняться ростом эмбриона, особенно процессом остеогенеза плода.

Функции щелочной фосфатазы в каждой ткани пока точно не установлены. В костной ткани она, по-видимому, участвует в процессах кальцификации. В клетке щелочная фосфатаза обычно связана с липопротеидной мембраной, а у нек-рых микроорганизмов, как показали гистохим. исследования, она находится между мембраной и клеточной стенкой. Локализация фермента на абсорбирующих поверхностях указывает на его возможную роль в трансмембранном переносе.

Мол. вес (масса) щелочной фосфатазы, выделенной из разных источников, варьирует в пределах 70 000—200 000; фермент из плаценты человека, полученный в кристаллическом виде, имеет мол. вес 125 000. Полагают, что его молекула состоит из двух субъединиц равного мол. веса, но не идентичных друг другу. Результаты генетических исследований указывают на существование трех типов субъединиц щелочной фосфатазы, различные сочетания к-рых дают шесть фенотипических вариантов, различающихся по электрофоретической подвижности и представляющих основные множественные формы (изоформы) фермента. Предполагают, что разница в составе субъединиц обусловлена наличием в молекулах нек-рых щелочных фосфатаз углеводной части, ковалентно связанной с белком.

Щелочная фосфатаза стабильна при нейтральных и щелочных значениях pH, но чувствительна к закислению среды. В области pH 7,0—8,0 и при концентрации ионов Zn2+ выше 10-5М фермент образует активный тетрамер, связывающий 16 ионов Zn2+. Микробная щелочная фосфатаза, выделенная из разных источников, способна образовывать активные гибриды с использованием мономеров из разных ферментов, что указывает на близость вторичной структуры микробных фосфатаз, несмотря на различия в составе и иммунол. свойствах субъединиц.

Субстратная специфичность щелочных фосфатаз из разных источников не одинакова. Так, фермент из костной ткани гидролизует целый ряд фосфорных соединений, в т. ч. гексозофосфаты, глицерофосфаты, этилфосфат, аденилат и фенилфосфат. Фермент из Escherichia coli способен гидролизовать различные полифосфаты, в т. ч. метафосфаты с различной длиной цепи, а также фосфосерин, фосфотреонин, пиридоксальфосфат и фосфохолин. Ряд щелочных фосфатаз из тканей млекопитающих при pH 8,5 проявляет ии-рофосфатазную активность, а фермент из слизистой оболочки кишечника цыпленка гидролизует цистеамин-S-фосфат и другие S-фосфаты с образованием неорганического фосфата и соответствующего тиола. Нек-рые щелочные фосфатазы обладают также трансферазной активностью и в реакциях перефосфорилирования могут катализировать перенос фосфата от фосфоэфира на спиртовую группу акцептора.

Т. о., щелочная фосфатаза способна гидролизовать соединения, содержащие связи P — F, Р — О — С, Р — О — P, Р — S и P — N, причем катализируемая реакция заключается в переносе фосфата от донора типа

щелочная фосфатаза способна гидролизовать соединения, содержащие связи P — F, Р — О — С, Р — О — P, Р — S и P — N, причем катализируемая реакция заключается в переносе фосфата от донора типа

(где X может быть представлен фтором, кислородом, серой, азотом, а R — атомом водорода, алкильным заместителем или совсем отсутствовать) на акцептор типа R' — ОН (где R' представлен атомом водорода или алкильным заместителем) с разрывом связи P — X. Поскольку фермент катализирует и обратную реакцию, акцепторная специфичность распространяется на все соединения типа R — ХН. Щелочная фосфатаза катализирует перенос только концевого фосфата, характерной чертой фермента является то, что относительные скорости гидролиза различных субстратов весьма близки.

Определение активности щелочной фосфатазы в крови имеет диагностическое значение при заболеваниях печени и костной системы. Так, гиперфосфатаземия отмечается при хрон. заболеваниях печени, саркоидозе (см.), туберкулезе (см.), амилоидозе (см.) и лимфогранулематозе (см.). При рахите (см.) увеличение активности (иногда в 2—4 раза) щелочной фосфатазы отмечено в 65% случаев. Болезнь Педжета (см. Педжета болезнь), а также остеогенная саркома (см.), фосфат-диабет (см.) сопровождаются значительным повышением активности щелочной фосфатазы в сыворотке крови.

Генетически обусловленная низкая активность щелочной фосфатазы в крови (гипофосфатазия) является причиной тяжелой наследственной болезни, сопровождающейся аномалиями скелета вследствие нарушения процессов окостенения; дефект фермента наследуется по аутосомно-рецессивному типу.

Кислая фосфатаза (фосфомоноэстераза; КФ 3.1.3.2) также широко распространена в природе. Она обнаружена в дрожжах, плесенях, бактериях, растительных и животных тканях и биол. жидкостях. У человека особенно высока активность кислой фосфатазы в предстательной железе. Эритроциты также содержат много кислой фосфатазы. Экстракт из ткани предстательной железы проявляет в слабокислой среде фосфатазную активность, к-рая почти в 1000 раз выше, чем фосфатазная активность экстрактов из печени или почек. Гистохим. исследования показывают, что фермент содержится гл. обр. в железистом эпителии предстательной железы; большие количества фермента обнаружены в сперме. Имеется тесная связь между синтезом кислой фосфатазы в предстательной железе и содержанием половых гормонов (см.). При низкой концентрации андрогенов (см.) в моче отмечают низкую активность кислой фосфатазы в сперме. То же наблюдают при крипторхизме (см.) и гипогонадизме (см.).

Оптимум pH для кислой фосфатазы находится в интервале значений pH между 4,7 и 6,0 (однако максимум активности кислой фосфатазы, полученной из селезенки, наблюдают при значениях pH от 3,0 до 4,8). Субстратный спектр и скорости гидролиза различных субстратов кислой фосфатазой и щелочной фосфатазой весьма отличны. Так, кислая фосфатаза не способна гидролизовать S-замещенные моноэфиры тиофосфорной к-ты, в то время как О-замещенные моноэфиры в тех же условиях активно гидролизуются ею (в случае щелочной фосфатазы наблюдается обратное).

Путем электрофоретического разделения кислой фосфатазы, выделенной из различных тканей, было установлено существование у этого фермента четырех компонентов — А, В, С и D. Сочетание компонентов ABD доминирует в почках; BD — в печени, кишечнике, сердце и скелетных мышцах; компонент В преобладает в коже, a D — в поджелудочной железе; компонент С присутствует в плаценте и не встречается ни в одном органе взрослого организма. В целом сочетание BD характерно для кислой фосфатазы большинства тканей человека за исключением кожи, почек и поджелудочной железы. Все 4 электрофоретических компонента представляют собой генетически детерминируемые изоформы кислой фосфатазы. Характерной чертой кислой фосфатазы является чувствительность к инактивации на поверхности раздела фаз; добавление поверхностно-активных веществ (см. Детергенты) к р-ру фермента предохраняет кислую фосфатазу от инактивации.

Мол. вес кислой фосфатазы различен у ферментов, полученных из разных источников, напр, два иммунологически различных молекулярных изофермента кислой фосфатазы из предстательной железы человека имеют мол. вес 47 000 и 84 000.

Определение активности кислой фосфатазы в сыворотке крови служит важным диагностическим тестом при выявлении рака предстательной железы (см. Предстательная железа, патология). У больных раком предстательной железы без метастазов повышение активности кислой фосфатазы в крови обнаруживается в 25% случаев, а при раке предстательной железы с метастазами опухоли в другие органы — в 80—90% случаев. Динамика показателей активности этого фермента в крови при раке предстательной железы может служить критерием эффективности проводимой терапии.

Определение кислой фосфатазы имеет существенное значение также и в судебной медицине. Высокая активность фермента в сперме дает возможность с большой достоверностью идентифицировать подозрительные пятна при с у д.-хим. исследовании вещественных доказательств.

Гистохимические методы обнаружения фосфатаз

Щелочную фосфатазу в гистохимии выявляют с помощью метода Гомори, методов с применением тетразолия, азоиндоксила и методом азосочетания. При применении тетразолиевого метода и метода азосочетания рекомендуется использование криостатных срезов, обработанных ацетоном, а также криостатных нефиксированных срезов. Методы с применением солей металлов требуют использования криостатных срезов, фиксированных в формальдегиде, или замороженных срезов после фиксации тканевых блоков в формальдегиде или глутаровом альдегиде. Наиболее рекомендуемым является метод Гомори, затем методы с применением тетразолия и азоиндоксила. При тетразолиевом методе определения щелочной фосфатазы используют 5-бром-4-хлор-3-индоксилфосфат, толуидиновую соль, нитротетразолий синий, 0,1 — 0,2 М трис-HCl-буфер или веронал-ацетатный буфер pH 9,2—9,4. Реакции азосочетания и тетразолиевый метод при гистохим. выявлении щелочной фосфатазы более чувствительны, чем метод Гомори, однако диффузия фермента, происходящая при использовании нафтолов и солей тетразолия, может препятствовать установлению его точной локализации.

Метод Гомори с применением солей металла

Инкубационная среда:

3% р-р альфа-глицерофосфата 10 мл

2 —10% р-р мединала 10 мл

2% р-р хлористого кальция CaCl2 (безводного) 15 мл

2% р-р сернокислого магния MgSO4 10 мл

дистиллированная вода 5 мл

Общий объем 50 мл

Инкубационную среду тщательно перемешивают и в случае помутнения фильтруют. Инкубируют 1—60 мин. при 37° или при комнатной температуре, затем сливают инкубационную среду, промывают срезы в проточной воде, переносят в 1 — 2% р-р хлористого кобальта CoCl2 или другую растворимую соль кобальта (ацетат или нитрат кобальта) на 5 мин. Затем промывают в проточной воде 2—5 мин. При инкубации нефиксированных срезов необходимо провести постфиксацию при комнатной температуре в 4% р-ре параформальдегида в течение 2 — 5 мин. и сполоснуть в проточной воде 2 мин. Срезы обрабатывают р-рами сернокислого аммония восходящих концентраций (0,1 — 1%) 2 мин. и промывают в проточной воде 10 мин., после чего заключают в глицериновый гель или сироп Апати либо (после обезвоживания) в энтеллан или подобную ему среду. Места локализации щелочной фосфатазы окрашиваются в черный цвет. Контрольные реакции проводят без добавления субстрата к инкубационной среде.

Метод одновременного азосочетания по Барстону

Инкубационная среда:

нафтол AS, AS-MX, AS-D, AS-B1 или фосфат нафтола AS-TR 10 — 25 мг растворить в стабильной соли диазония (N, N '-диметилформамиде или диметилсульфоксиде) 0,5 мл

0,1 — 0,2 М веронал-ацетатный или трис-HCl-буфер, pH 8,2—9,2 50 мл

прочный синий В, ВВ, RR, прочный красный TR, прочный синий VRT (вариамин синий, (голь RT), прочный синий VВ (вариамин синий В) или прочный фиолетовый В 50 мг

Инкубационную среду тщательно перемешивают и фильтруют. Вместо стабильной соли диазония можно использовать 0,5 мл свежеприготовленного гексазотированного нового фуксина. В этом случае нужную величину pH устанавливают, добавляя едкий натр по каплям. Инкубируют 5 — 60 мин. при 37° или при комнатной температуре. Сливают инкубационную среду, срезы споласкивают в дистиллированной воде, помещают в 4% р-р формальдегида на несколько часов при комнатной температуре, затем промывают в проточной воде, при необходимости докрашивают ядра прочным красным или гематоксилином и заключают в глицериновый гель или сироп Апати. В зависимости от вида соли диазония, включенной в инкубационную среду, структуры, обладающие ферментативной активностью щелочной фосфатазы, окрашиваются в сине-фиолетовый или красный цвет.

Для гистохим. выявления кислой фосфатазы рекомендуют использовать криостатные или замороженные срезы после предварительной фиксации в формальдегиде, а также криостатные срезы, подвергнутые замораживанию и высушиванию и покрытые целлоидином, и криостатные срезы, подвергнутые замещению в замороженном состоянии и покрытые целлоидином. Лучшие результаты достигаются при фиксации тканей глутаровым альдегидом или формальдегидом. Для выявления фермента используют реакции азосочетания, метод Гомори и индигогенные реакции. Универсальным считается метод одновременного азосочетания с фосфатами нафтола и гекеазотированным n-розанилином или новым фуксином. Вторым по частоте использования является индигогенный метод с применением 5-бром-4-хлор-3-индоксилфосфата в качестве субстрата. Метод Гомори дает возможность точно идентифицировать лизосомы (см.).


Метод Гомори с солями металлов (в модификации)

Инкубационная среда:

0,1 М ацетатный буфер, pH 5,0 или 6,0 50 мл

0,24% р-р нитрата свинца 50 мл

3 % р-р альфа-глицерофосфата натрия или 0,1% р-р цитидинмонофосфата натрия 10 мл

Общий объем 110 мл

Инкубационную среду хорошо смешивают и оставляют стоять на 15—30 мин. при температуре инкубации, затем фильтруют. Инкубацию проводят в кюветах при 37° в течение 10—60 мин. или при комнатной температуре до 2 час., можно инкубировать свободноплавающие срезы. Инкубационную среду сливают, срезы споласкивают в двух сменах дистиллированной воды по 1 мин. в каждой и помещают в 0,5 — 1% р-р желтого сульфида аммония на 1 — 2 мин. Снова споласкивают в дистиллированной воде и заключают в глицериновый гель или сироп Апати. Структуры, обладающие активностью кислой фосфатазы, окрашиваются в коричневый цвет.

Метод одновременного азосочетания с эфирами нафтола AS

Инкубационная среда:

фосфат нафтола AS-BI или нафтола AS-TR 20 — 25 мг растворяют в N,N'-диметилформамиде - 1 мл

Забуференный гексазотированный n-розанилин или новый фуксин (1,5 — 4,5 мл гексазотированного n-розанилина или 1,25 мл нового фуксина растворяют в 45,5 — 48,5 мл 1,36—2,72% р-ра ацетата натрия CH3CONa•3H2O или 48,75 мл 0,1 М серонал-ацетатного буфера, pH ок. 6,0, доводят до pH 5,0 — 5,5) - 50 мл

Общий объем 51 мл

Инкубационную среду тщательно смешивают и фильтруют. Инкубируют 30 — 60 мин. при 37° или 1—2 час. при комнатной температуре либо несколько часов (сутки) в холодильнике при +4°. Инкубационную среду сливают, срезы споласкивают в дистиллированной воде и помещают в 4% р-р формальдегида на несколько часов при комнатной температуре. Споласкивают в проточной воде, при необходимости докрашивают ядра гематоксилином и заключают в глицериновый гель или сироп Апати. Структуры, обладающие активностью кислой фосфатазы, окрашиваются в красный цвет.

Азоиндоксильный метод по Госсрау

Инкубационная среда: толуидиновую соль 5-бром-4-хлор-3-индоксилфосфата 1,5 — 3 мг растворяют в 0,075 — 0,15 мл N,N'-диметилформамида 0,1 М ацетатный буфер, pH 5,0 10 мл

Гексазотированный новый фуксин 0,25 мл

или прочный синий В 5 —10 мг

Общий объем ~10 мл

Инкубационную среду тщательно перемешивают и фильтруют, прикрепленные или свободноплавающие срезы инкубируют 15—60 мин. при 37°. Инкубационную среду сливают, срезы споласкивают в дистиллированной воде и помещают в 4% р-р формальдегида на несколько часов при комнатной температуре, затем споласкивают в проточной воде и помещают в дистиллированную воду, после чего заключают в глицериновый гель или сироп Апати. Структуры, обладающие активностью кислой фосфатазы, окрашиваются в синевато-коричневый цвет.



Библиогр.: Диксон М. и Уэбб Э. Ферменты, пер. с англ., с. 364, 458, М., 1982; Лилли Р. Патогистологическая техника и практическая гистохимия, пер. с англ., М., 1969; Лойда 3., Госсрау Р. и Шиблер Т. Гистохимия ферментов, пер. с англ., М., 1982; Номенклатура ферментов, пер. с англ., под ред. А. Е. Браунштейна, М., 1979; Пирс А. Гистохимия, пер. с англ., М., 1962; Enzymes, ed. by P. D. Boyer, v. 7, N. Y.— L., 1972.



Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание