ДЫХАТЕЛЬНЫЕ ПИГМЕНТЫ

Перейти к: навигация, поиск

Дыхательные пигменты (лат. pigmentum краска) — окрашенные органические вещества различного химического строения, способные в зависимости от условий связывать или освобождать молекулярный кислород. В организме человека и животных Дыхательные пигменты осуществляют транспорт кислорода от органов дыхания к тканям и принимают участие в процессах биологического окисления и в окислительно-восстановительных процессах. Главными из Дыхательных пигментов являются дыхательные белки и дыхательные ферменты (см.).

Использование растворенного в воде кислорода одноклеточными или низшими многоклеточными животными организмами, обитающими в водной среде, осуществляется в результате его диффузии через клеточные мембраны. У более сложно организованных животных обеспечение организма кислородом происходит с помощью специальных дыхательных белков, переносящих кислород от органов дыхания к тканям. К таким белкам относятся гемоглобин (см.), эритрокруорин, хлорокруорин, гемэритрин, гемоцианин, геликорубин. Миоглобин (см.) не способен переносить кислород, но участвует в его депонировании.

Дыхательные пигменты представляют собой сложные белки — хромопротеиды (см.), молекулы которых состоят из простого белка и небелковой окрашенной простетической группы.

У многих Д. п. простетической группой является железопорфириновый комплекс — гем. У позвоночных гемсодержащими дыхательными пигментами являются гемоглобин, находящийся в эритроцитах и осуществляющий связывание, транспорт и высвобождение кислорода в тканях, и миоглобин, с помощью к-рого в мышцах резервируется кислород в количествах, достаточных для осуществления механической работы, производимой мышцами. Во внутриклеточном депонировании кислорода, кроме миоглобина, по-видимому, принимают участие находящиеся в клетках каротиноиды (см.), причем роль этих пигментов повышается в условиях гипоксии и при старении организма.

Более многочисленными и разнообразными являются Д. п. беспозвоночных животных. Высокомолекулярные гемоглобиноподобные вещества (мол. вес 400 000—6 700 000), растворенные в гемолимфе кольчатых червей (полихет и олигохет) и моллюсков, получили название эритрокруоринов. Они представляют собой гемсодержащие белки, в состав которых входит от 30 до 400 групп гема. Каждый гем способен связывать одну молекулу кислорода. Молекула эритрокруорина состоит из 12 субъединиц.

Много общего с эритрокруорином имеет хлорокруорин — зеленый пигмент многощетинковых кольчатых червей (Spirographis и родственных им видов). Он содержится в растворенном состоянии в плазме крови.

Хлорокруорин — гемсодержащий белок, гем к-рого отличается от гема гемоглобина наличием формильной группы при втором углеродном атоме протопорфиринового кольца; он носит название спирографиспорфирина или спирографисгемина. Мол. вес хлорокруорина колеблется от 2 750 000 до 3 500 000, содержание железа в нем находится в пределах 0,45—1,2%, молекула состоит из 12 субъединиц и содержит 190 групп хлорокруорогема. Хлорокруорин обладает высоким сродством к кислороду и незначительным — к окиси углерода; кислородная емкость крови кольчатых червей составляет 10%.

Гемэритрин — коричнево-красный Д. п. с мол. весом 66 000, находится внутри клеток, циркулирующих в полостной жидкости некоторых видов беспозвоночных (морские кольчатые черви, гл. обр. Sipunculidae, и др.). Гемэритрин отличается от других дыхательных белков тем, что не содержит гема. Молекула гемэритрина состоит из 8 субъединиц, в каждой из которых находится по 2 атома железа, которые, по всей вероятности, соединяются с атомами серы, входящей в состав белка. Содержание железа колеблется от 0,8 до 1,01%, кислородная емкость составляет ок. 1,6%. Свойство гемэритрина обратимо соединяться с кислородом (каждые 2 атома железа связывают одну молекулу кислорода) обусловлено особым расположением полипептидных цепей в его молекуле.

К Дыхательным пигментам относят также гемсодержащий красный пигмент виноградной улитки — геликорубин, способный к обратимому окислению — восстановлению.

Дыхательные пигменты, содержащие в своей молекуле медь, называются гемоцианинами. Они содержатся в плазме крови многих моллюсков и членистоногих, придавая ей голубую окраску. Гемоцианины представляют собой высокомолекулярные белки (мол. вес колеблется от 500 000 до 10 000 000), содержание меди в них составляет 0,17—0,18% (моллюски) и 0,24—0,26% (членистоногие). Молекулы гемоцианинов имеют одинаковую форму и состоят из 3—6 субъединиц, содержащих значительное количество атомов меди (у гемоцианина омара их 20), которые располагаются парами. Гемоцианины отличаются один от другого по своей растворимости, цвету (от пурпурно-синего до зеленого) и форме кристаллов. Они способны обратимо соединяться с кислородом, причем одна молекула кислорода связывается с двумя атомами одновалентной меди, которые при этом окисляются. Кислородная емкость крови таких моллюсков и членистоногих пропорциональна содержанию в ней меди и количественно меньше, чем кислородная емкость крови позвоночных животных. В крови, ткани печени и других тканях животных обнаружены медьсодержащие белки, не участвующие в переносе кислорода. К таким белкам, являющимся Д. п., относятся гемокупреин и гепатокупреин. Они представляют собой синие пигменты идентичной структуры, в результате чего эти Д. п. получили общее название цитокупреины. Цитокупреин — это белок с мол. весом 32 000; молекула цитокупреина состоит из двух субъединиц, каждая из которых содержит один атом меди и один атом цинка в двухвалентном состоянии. Установлено, что фермент супероксиддисмутаза, катализирующий реакцию дисмутации супероксидных радикалов H2O-, накапливающихся в тканях в ходе окислительных процессов, представляет собой цитокупреин.

Поскольку супероксидные радикалы и некоторые продукты их превращения чрезвычайно токсичны, супероксид-дисмутаза является жизненно необходимым ферментом.

Другой медьсодержащий белок — церулоплазмин (см. Кровь) — играет главную роль в резервировании и транспорте меди у позвоночных животных и человека. Церулоплазмин является не только нетоксическим резервом меди в организме, но и способен также ускорять окисление двухвалентных ионов железа в трехвалентные, т. е. обладает ферроксидазными свойствами, участвует в синтезе гемоглобина и трансферрина (железосвязывающего белка плазмы крови; нормальное содержание его у человека — 250 мг%, при поражении паренхимы печени эта цифра уменьшается).

Церулоплазмин является медьсодержащим альфа-1-глобулином сыворотки крови человека с мол. весом 151 000; на его долю приходится до 0,5% от общего количества белка в плазме крови человека и 90% всей меди плазмы крови. У здорового человека общее содержание меди в плазме крови составляет 70— 140 мкг%. Гиперкупремия и гиперцерулоплазминемия наблюдаются в остром периоде инфекций, протекающих с лихорадкой и распадом клеточных элементов, при заболеваниях печени — гепатитах, циррозах и механических желтухах, при карциноме, лейкемии, анемиях. Гиперцерулоплазминемия отмечается также при беременности.

В сыворотке крови количественное определение церулоплазмина проводят в клин, лабораториях по Равину. Метод основан на том. что церулоплазмин является единственным компонентом сыворотки крови, обладающим оксидазными свойствами, поэтому он катализирует окисление некоторых аминов, в т. ч. парафенилендиаминдигидрохлорида, в результате окисления к-рого образуется вещество сине-фиолетового цвета. Оптическая плотность (см. Колориметрия) р-ра измеряется при 530 нм, и концентрация церулоплазмина, пропорциональная степени окисления используемого субстрата, вычисляется по калибровочной кривой. Зная количество меди в плазме крови, можно также рассчитать содержание церулоплазмина по формуле:

церулоплазмин(мг%) = Cu(мкг%)• 100/0,32

т. к. теоретически содержание меди в церулоплазмине составляет 0,32%.

К Дыхательным пигментам относится также обширная группа флавоновых пигментов, окрашенных в желтый или желто-коричневый цвет и содержащих в своей молекуле ядро флавона (см. Флавоны). Эти пигменты содержатся в основном в растениях. Для животных и человека особое значение имеют производные флавона, близкие по своему хим. строению и биол, активности и являющиеся компонентами капилляроукрепляющего витамина Р. К таким Д. п. относятся гесперидин, рутин, катехин, эпикатехин и их галловые эфиры. Витамин P в животных клетках участвует в окислительно-восстановительных процессах вместе с аскорбиновой к-той, а также является ингибитором ряда ферментов, особенно гиалуронидазы (см.). Рутин способен в определенных условиях стимулировать процессы тканевого дыхания и окислительного фосфорилирования в митохондриях и, по-видимому, участвует в биосинтезе убихинона. Возможно, что катехин, рутин и гесперидин обладают адреналиноподобным действием.


Библиография: Верболович П. А. и Утешев А. Б. Железо в животном организме, Алма-Ата, 1967, библиогр.; Карнаухов В. Н. Функции каротиноидов в клетках животных, М., 1973, библиогр.; Молекулы и клетки, пер. с англ., под ред. Г. М. Франка, в. 4, с. 136, М., 1969; Fridoyieh I. Superoxide dismutases, Ann. Rev. Biochem., v. 44, p. 147, 1975, bibliogr.; Кlotz J.M., Langerman N. R. a. Dаrnall D. W. Quaternary structure of proteins, ibid., v. 39, p. 25, 1970, bibliogr.; MalmstromB. G. a. Neilands J. B. Metalloproteins, ibid., v. 33, p. 331, 1964, bibliogr.; Mellema J. E.a. KlugA. Quaternary structure of gastropod haemocyanin, Nature (Lond.), v. 239, p. 146, 1972.


Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание

Рекомендуемые статьи