КРОВЯНОЕ ДАВЛЕНИЕ

КРОВЯНОЕ ДАВЛЕНИЕ — давление крови на стенки кровеносных сосудов и камер сердца; важнейший энергетический параметр системы кровообращения, обеспечивающий непрерывность кровотока в кровеносных сосудах.

Физиология

Источником энергии для создания К. д. в сердечно-сосудистой системе служат сокращения мускулатуры желудочков сердца, выполняющих роль нагнетательного насоса. Вспомогательную роль играют сокращения скелетной мускулатуры, пульсация артерий, передающаяся на расположенные рядом вены, периодические волнообразные сокращения вен (см. Кровообращение).

Во время систолы желудочков сердца находящаяся в их полости кровь подвергается объемному сжатию, сила к-рого уравновешивается силами взаимного отталкивания между молекулами крови. По мере сокращения мускулатуры желудочков, когда закрыты клапаны сердца, в крови нарастает особое напряженное состояние: кровь находится под давлением, к-рое равномерно передается во все стороны, в т. ч. и на клапаны. Когда давление крови в левом желудочке станет выше давления в аорте, порция крови поступает в аорту (см. Артериальное давление).

Полная энергия движущейся крови, отнесенной к единице объема, определяется уравнением:

где h — высота над так наз. флебостатическим уровнем давления в правом предсердии (величина, близкая к атмосферному давлению), P — статическое давление крови в аорте, ρ — плотность крови, g — ускорение силы тяжести, v — линейная скорость крови в аорте.

Если систему кровообращения считать замкнутой и пренебречь потерями полной энергии кровотока на трение в сосудистой системе и работу, расходуемую на фильтрацию жидкости в капиллярах, то с определенными оговорками для описания системы кровообращения можно применить уравнение Бернулли, по к-рому при стационарном течении идеальной жидкости полное давление (Рп) остается величиной постоянной в любом поперечном сечении потока:

где Рст — статическое, Рдин — Динамическое, Рг — гидростатическое давление, остальные обозначения такие же, как и в предыдущей формуле.

Рис. 1. Способы измерения полного (1) и статического (2) давления крови (стрелка обозначает направление движения крови).

Полное давление можно определить с помощью манометрической трубки, отверстие к-рой направлено навстречу току крови, а статическое или боковое давление — при параллельном направлении плоскости отверстия движению крови (рис. 1). Динамическое давление представляет разность полного и статического давлений.

Во время систолы желудочков порция крови выбрасывается в аорту и легочную артерию. В силу инерции и из-за периферического сопротивления эта порция крови не может переместиться сразу по сосудам, происходит увеличение давления на эластичные стенки сосудов, вследствие чего они расширятся. Давление компенсируется натяжением стенок. Сила натяжения в проксимальных участках будет больше, чем в дистальных. Поэтому возникающая сила перемещает кровь из первого участка во второй. Фронт изменения давления в виде волны распространяется с определенной скоростью вдоль аорты и артерий (см. Пульс). Сила, необходимая для продвижения частичек крови, возникает за счет разности давления вдоль кровеносного сосуда.

Аорта и крупные артерии, растянутые во время систолы, во время диастолы сокращаются, поддерживая тем самым непрерывный ток крови. Пульсация кровяного давления в аорте постепенно уменьшается к периферии, обеспечивая относительно равномерное движение крови в капиллярах.

Энергию непрерывного движения крови характеризует величина среднего К. д., к-рая давала бы такой же гемодинамический эффект при условии отсутствия пульсовых колебаний давления крови. Так как диастола более продолжительна, то величина среднего давления ближе к величине минимального давления.

Энергия К. д., созданная работой сердца, расходуется на продвижение крови по большому и малому кругам кровообращения, преодоление сопротивления току крови в сосудистой системе (см. Гемодинамика).

В упрощенной модели «насос — жесткая трубка» объемная скорость потока жидкости определяется уравнением Пуазейля:

Q = (P1 - P2)/R,

где P1 - Р2 — разность давлений в начале и в конце трубки, R — гидравлическое сопротивление этого участка.

В свою очередь, сопротивление R можно рассчитать по формуле:

R = (8ηl)/(πr4),

где η — вязкость жидкости, l — длина трубки, r — радиус сосуда. Видно, что сопротивление с уменьшением радиуса сосуда возрастает пропорционально его четвертой степени. На артериальную часть сосудистого русла приходится ок. 66% общего периферического сопротивления, на капилляры — ок. 27%, а на венозную часть — ок. 7%.

Объемная скорость тока жидкости (Q) определяется законом Гагена — Пуазейля:

Q = (πr4/8η) * (P1 - P2)/l,

что позволяет оценить в первом приближении движение крови в отдельном сосуде при условии постоянства его радиуса.

В системе кровообращения объемная скорость движения жидкости не зависит от суммарной площади поперечного сечения сосудистого русла. Поэтому, несмотря на то что суммарный просвет сосудистого русла меняется от аорты до вен, объемная скорость кровотока является постоянной величиной в замкнутой кровеносной системе. Эта закономерность нарушается при изменении нагнетательной функции сердца, при изменении просвета сосудов на отдельных участках сосудистого русла, при изменении объема циркулирующей крови (ОЦК).

На основе уравнения Гагена — Пуазейля можно оценить влияние отдельного участка сосудистой системы на величину общего сопротивления всей системы, представив уравнение в следующем виде:

P1 - P2 = (8l/πr^4)*Qη,

где так наз. фактор размера (8l/πr^4) связан с размером кровеносного сосуда, а фактор вязкости (Qη)) — со скоростью объемного кровотока и вязкости. Тогда общее сопротивление кровотоку, определяющее падение К. д., будет равно произведению этих двух факторов.

Сила трения на единицу поверхности (т) определяется по формуле Ньютона:

τ = F/S = η(dv/dx),

где F — сила трения, S параллельная потоку плоская поверхность, η — вязкость крови. Сила трения в первом приближении пропорциональна градиенту скорости (dv/dx).

В реальной системе кровообращения наибольшее суммарное сопротивление кровотоку имеет место в артериолах, где скорость течения крови достаточно велика. В капиллярах падение давления будет меньше, т. к. длина капилляров меньше, чем длина артериол, а скорость движения крови ниже.

Падение К. д. обычно оценивают по сопротивлению току крови для суммарного просвета или на отдельных участках кровеносной системы. Кровоснабжение отдельных органов и тканей можно рассматривать как параллельное включение различных участков сопротивления. Если просвет сосудов увеличится, то понизится сопротивление в этом участке, возрастет объемная скорость, улучшится кровоснабжение.

На величину сопротивления току крови влияют ветвления сосудов и возрастание пристеночного трения. При сравнительно небольшом увеличении суммарного просвета артериол их количество увеличивается в сотни раз по сравнению с крупными артериями. Поэтому падение К. д. от пристеночного трения на этом участке максимально. Число капилляров больше, чем число артериол, но их незначительная длина и низкая скорость движения крови в них приводит, хотя и к существенному, но относительно меньшему падению К. д., чем в артериолах. Небольшое падение К. д. в венах объясняется увеличением суммарного просвета вен по сравнению с артериями почти в два раза.

В физ.-хим. отношении кровь является суспензией высокой концентрации, т. к. ок. 36—48% ее объема составляют форменные элементы.

О движущейся крови можно говорить как о двухфазной системе, в осевом токе к-рой находятся эритроциты, а в периферическом (пристенном) слое перемещается плазма, имеющая меньшую вязкость. Течение крови в сосудах в норме носит в основном ламинарный характер.

Клапаны сердца, аорты, легочной артерии и вен выполняют только одну функцию: обеспечивают одностороннее направление движения крови по сосудам, т. е. исключают противоток.

В соответствии с анатомо-физиол, строением сердечно-сосудистой системы (см.) различают внутрисердечное, артериальное, венозное и капиллярное К. д., измеряемое или в мм вод. ст. (давление в венах), или в мм рт. ст. (давление на остальных участках сосудистой системы).

Внутрисердечное давление (см.) неодинаково в разных камерах сердца и резко различается в фазах систолы и диастолы, т. е. зависит от мощности сердечного сокращения. Помимо мощности сердечного сокращения на величину К. д. в желудочках сердца влияет форма полости желудочков и ее изменения в процессе изгнания крови. В полости левого желудочка у здоровых взрослых людей величина К. д. составляет в период систолы в среднем 120 мм рт. ст., в период диастолы — 4 мм рт. ст.; в правом желудочке — 25 и 2 мм рт. ст. соответственно. Различия величин К. д. в желудочках сердца при малой разнице объемов их наполнения соответствует большей (примерно в 5—6 раз) мощности левого желудочка по сравнению с правым.

В предсердиях величина К. д. колеблется не только по фазам сердечного цикла, но и в связи с дыхательными колебаниями внутригрудного давления. Средние значения К. д. за сердечный цикл составляют в левом предсердии 8—9 мм рт. ст., в правом — 3 мм рт. ст., достигая иногда отрицательных значений. Величина К. д. в правом предсердии принимается за так наз. флебостатический уровень, по отношению к к-рому исчисляют высоту К. д. в разных участках системы большого круга кровообращения. В связи с развитием техники зондирования полостей сердца измерение в них К. д. все шире используется с диагностической целью.

Артериальное давление (см.) в центральных артериях имеет фазовые колебания с максимальными значениями в период изгнания крови из желудочков (систолическое давление) и минимальными — в конце диастолы (диастолическое давление). В крупных артериях большого круга у взрослых людей значения систолического К. д. в норме находятся в пределах 100—140 мм рт. ст., диастолического— 70—80 мм рт. ст.; в легочном стволе эти величины составляют соответственно 16— 30 и 5—14 мм рт. ст. Артериальное К. д. изменяется с возрастом, имеет суточные колебания, зависит от уровня физ. нагрузки и других факторов.

Относительно высокое значение К. д. в период диастолы поддерживается благодаря компрессионной функции центральных артерий. Растяжение стенок сосудов дополнительным объемом крови в период систолы как бы аккумулирует часть систолической энергии кровотока в виде энергии напряжения стенок. Это обеспечивает постепенное и равномерное снижение К. д. в сосудистой камере после систолы, пропорциональное уменьшению напряжения стенок камеры по мере убывания из нее крови за время диастолы. Следовательно, величина диастолического К. д. в артериальной камере прямо пропорциональна систолическому приросту объема крови в ней, величине периферического сопротивления кровотоку и обратно пропорциональна длительности диастолы. Роль компрессионной камеры в большом круге кровообращения выполняют аорта (особенно наиболее растяжимый ее грудной отдел) и крупные артерии мышечно-эластического и мышечного типа.

Следует отметить, что спортивными врачами обнаружено интересное явление, сопровождающее деятельность сердечно-сосудистой системы при больших физ. нагрузках и получившее название бесконечного тона. Суть его состоит в том, что у спортсменов юношеского возраста при максимальной нагрузке обнаруживается отсутствие измеримых значений диастолического давления. Физиол, механизмы возникновения бесконечного тона и значение его для жизнедеятельности пока не ясны.

Разницу между величинами систолического и диастолического К. д. называют пульсовым давлением, а пульсовые колебания К. д. называют иногда волнами I порядка, в отличие от дыхательных колебаний К. д. (волн II порядка) и еще более медленных, не строго периодических колебаний (волн III порядка), которые связывают с изменениями активности сосудодвигательного центра. Пульсовые колебания К. д. сглаживаются в сосудах сопротивления (мелкие артерии, артериолы) и почти не определяются в капиллярах. Волны II порядка более выражены в венах.

Для гемодинамики решающее значение имеет величина среднего давления, к-рая в артериях определяется отношением суммы всех изменений давления за сердечный цикл ко времени этого цикла. Среднее К. д. в артериях значительно более устойчиво, чем величины систолического и диастолического давлений, и меньше последних изменяется по длине артериальных сосудов.

Капиллярное давление (см.) отличается в норме достаточным постоянством, составляя на артериальном отрезке капилляра большого круга кровообращения 30—50 мм рт. ст., на венозном —15—25 мм рт. ст. при горизонтальном положении тела. Величина К. д. в капиллярах малого круга — ок. 10 мм рт. ст. К наиболее важным факторам, определяющим величину капиллярного К. д., относятся активные изменения сопротивления кровотоку в прекапиллярах, число капилляров и изменения венозного давления.

Венозное давление (см.) — наиболее низкое К. д. в сосудистой системе. В связи с этим перемены положения тела существенно сказываются на величине К. д. в венах, располагающихся выше или ниже флебостатического уровня. При горизонтальном положении тела величина К. д. в периферических венах составляет 60—100 мм вод. ст. и зависит от энергии притока крови из капилляров, сопротивления оттоку крови из центральных вен (давления в грудной полости, в правом предсердии) и тонуса венозных стенок, определяющего общую емкость венозного русла. В портальной системе величина К. д. в 2—3 раза выше, чем в нижней полой вене, и находится в зависимости от величины внутрибрюшного давления (см. Портальное кровообращение). Колебания внутригрудного давления отражаются на величине К. д. во всех венах, но в наибольшей степени они проявляются в венах, расположенных в грудной полости.

Для характеристики некоторых важных параметров гемодинамики (напр., для расчета полного градиента давления в сосудистой системе) принято измерять так наз. центральное венозное давление — т. е. давление в верхней и нижней полых венах.

Значение кровяного давления для жизнедеятельности организма определяется его ролью как энергетического фактора обеспечения кровотока, процессов обмена между кровью и тканями организма и мочеобразовательной функции почек, а также как фактора, поддерживающего или включающего многие рефлекторные реакции гомеостаза (см.).

В большом круге кровообращения человека доля кинетической энергии в покое незначительна, поэтому решающее значение для кровотока имеет разница величин К. д. в аорте и полых венах, или полный градиент давления. В малом круге кровообращения, где сопротивление кровотоку невелико, а также в большом круге при физ. нагрузке доля кинетической энергии значительно выше, но наличие градиента давления сохраняет ведущее значение.

Градиент давления определяет не только скорость, но и направление кровотока (всегда из области высокого в область низкого К. д.). В патол. условиях градиент давления может изменяться в обратном направлении и в сосудах наблюдается обратный ток крови.

Значение К. д. для процессов обмена веществ на уровне капиллярных мембран весьма существенно и неоднозначно. Во-первых, при наличии перикапиллярного давления в тканях сохранение просвета капилляра возможно лишь при положительном трансмуральном давлении — разнице между К. д. внутри капилляра и внешним тканевым давлением. Во-вторых, от давления крови в прекапиллярах зависит общее количество открытых капилляров, что наряду с влиянием К. д. на их просвет определяет общую площадь капиллярных мембран, через которые происходит обмен. В-третьих, для веществ, проходящих через мембрану путем диффузии, роль К. д. опосредованно связана с величиной объемной скорости кровотока, от к-рой зависит концентрация диффундирующих веществ на мембране и, следовательно, скорость их диффузии. Наконец, величина внутрикапиллярного К. д. имеет решающее значение для процессов фильтрации р-ров через мембрану. По осмотическому состоянию плазма крови отличается от межклеточной жидкости более высокой концентрацией коллоидов, создающих коллоидноосмотическое, или онкотическое, давление, препятствующее фильтрации жидкой части крови в межклеточное пространство (см. Кровь). Скорость и направление фильтрации через капиллярную мембрану определяется разницей между трансмуральным и онкотическим давлением, к-рую называют фильтрационным давлением. Величина онкотического давления плазмы крови в капилляре составляет от 20 до 30 мм рт. ст., что соизмеримо с внутрикапиллярным К. д. По общепринятым представлениям Э. Старлинга, фильтрация р-ров из крови в ткани на артериальном отрезке капилляра обеспечивается величиной К. д., создающей положительное фильтрационное давление; по длине капилляра К. д. снижается, а онкотическое давление растет (из-за потерь фильтрующейся воды), и на венозном отрезке капилляра оно превышает трансмуральное давление, вследствие чего р-ры фильтруются на этом отрезке из межклеточного пространства в кровь. Нормальные соотношения процессов фильтрации по длине капилляров могут существенно нарушаться при патол, изменениях К. д. Играет роль и изменение положения тела, т. к. в сосудах, лежащих ниже или выше флебостатического уровня, К. д. соответственно повышается или понижается. Градиент давления при этом не изменяется (за счет одинакового прироста давления в артериях и венах), и кровоток не нарушается, но трансмуральное давление и, следовательно, фильтрационное давление в капиллярах изменяются в зависимости от степени изменения К. д. по отношению к флебостатическому уровню. К. д. имеет важное значение и для мочеобразовательной функции почек (см.).

Механизмы регуляции кровяного давления

В норме К. д. у здорового человека характеризуется определенной стабильностью в различных участках сосудистого русла. Постоянство уровня К. д. является жизненной необходимостью, связанной с обеспечением оптимального кровоснабжения органов и тканей организма.

Устойчивость К. д. в организме обеспечивается функциональными системами (см.), поддерживающими оптимальный для метаболизма тканей уровень артериального давления. Основньм принципом деятельности функц, систем является принцип саморегуляции, благодаря к-рому в здоровом организме любые эпизодические колебания АД, вызванные действием физ. или эмоциональных факторов, через определенное время прекращаются и АД возвращается к исходному уровню. При эмоциональных реакциях и физ. нагрузках происходит смена заданного уровня К. д. и функц, системы осуществляют по закону саморегуляции слежение за новым, повышенным по сравнению с покоем и более адекватным для данной приспособительной деятельности организма уровнем АД. Положительные и отрицательные эмоциональные реакции, имеющие различную биол, значимость, сопровождаются характерными для них сердечно-сосудистыми реакциями. Отрицательные эмоции, как правило, сопровождаются гипертензивной динамикой артериального давления, а положительные реакции — двухфазной гипер- и гипотензивной динамикой АД. Т. о., при отрицательных эмоциональных состояниях в связи с преобладанием гипертензивных влиянии создаются лучшие условия для суммации прессорных гемодинамических реакций, чем при положительных эмоциональных состояниях.

В опытах на животных показано, что при отрицательных эмоциональных перенапряжениях, вызванных продолжительной конфликтной ситуацией (напр., вследствие 30-часовой иммобилизации у крыс), возникают характерные гемодинамические реакции. Были обнаружены группы крыс, проявляющие либо устойчивость АД, либо продолжительные многочасовые гипер- и гипотензивные реакции АД. Одна группа животных оказалась предрасположенной к эмоциональному стрессу. Эти животные не смогли адаптироваться и погибали на фоне гипер- и гипотензивной динамики АД, гипертензивных кризов, приводящих к повышению АД до 180—200 мм рт. ст. При продолжительном эмоциональном стрессе, вызванном многомесячной периодической иммобилизацией, обнаруживается тенденция к развитию стойкой артериальной гипертензии, а также выявляется повышенная эмоциональная реактивность, характеризующаяся более сильными гемодинамическими реакциями, возникающими в ответ на эмоционально значимый стимул.

Рис. 2. График, характеризующий изменение величины кровяного давления в различных участках сосудистого русла; по оси ординат — величина кровяного давления в мм рт. ст.; по оси абсцисс — участки сосудистого русла соответственно ходу движения крови: 1— аорта; 2— крупные артерии; 3 — артериолы; 4 — капилляры; 5 — вены; 6 — полая вена (у сердца); видно, что пульсовые колебания (разница между систолическим и диастолическим давлением), максимальные в аорте, постепенно уменьшаются, достигая минимума в артериолах.

Величина АД непосредственно определяется следующими эффекторными механизмами. Во-первых, деятельностью сердца, выполняющего нагнетательную функцию, от к-рой зависят систолический и минутный объем кровотока. Во-вторых, периферическим гемодинамическим сопротивлением, зависящим от тонуса и просвета сосудов, особенно артериол, а также от вязкости и массы циркулирующей крови. Благодаря периодичности нагнетательной функции сердца и эластичности сосудов давление в аорте и артериях колеблется. Размах колебаний (пульсовое давление) зависит от систолического выброса крови и эластичности сосудов. По мере движения крови пульсовые колебания уменьшаются и, начиная с артериол, кровь течет в сосудах практически под постоянным давлением (рис. 2). Минимальное давление крови — в крупных венах (у устья полых вен ниже атмосферного).

Механизмы саморегуляции АД в организме предполагают динамическое взаимодействие двух противоположных тенденций: прессорных и депрессорных, оказывающих соответствующие влияния на деятельность сердца, гемодинамическое сопротивление периферического сосудистого русла и регионарный кровоток.

Прессорные реакции (см.) характеризуются увеличением минутного объема кровотока за счет возрастания систолического объема или учащения сердечных сокращений при неизменном систолическом объеме, повышением периферического сопротивления в результате суживания сосудов, возрастанием вязкости и объема циркулирующей крови и пр.

Депрессорные реакции (см.) характеризуются уменьшением минутного и систолического объемов, снижением периферического гемодинамического сопротивления за счет расширения артериол и уменьшения вязкости крови.

Своеобразной формой регуляции К. д. является перераспределение регионарного кровотока, при к-ром повышение АД и объемной скорости крови в отдельных жизненно важных органах (сердце, мозг) достигается за счет кратковременного уменьшения этих показателей в других, менее значимых для существования организма органах.

Между величинами К. д. в различных участках сосудистого русла существует определенная взаимосвязь. Прежде всего величина К. д. определяется уровнем АД в начальном участке аорты. К. д. зависит также от тонуса сосудов и их периферического сопротивления кровотоку. На этом основаны регуляция регионарного кровотока и перераспределение крови между органами. Повышение гемодинамического сопротивления в отдельных органах приводит к снижению кровотока в них и одновременному повышению АД в магистральных сосудах, что способствует усилению кровообращения в других органах.

Нагнетательная функция сердца, тонус сосудов, состояние периферического кровообращения, объем циркулирующей крови находятся под контролем в. н. с., включающей парасимпатический и симпатический отделы. Особая роль в управлении деятельностью указанных периферических органов, определяющих гемодинамику, принадлежит гормональным влияниям со стороны гипофиза, надпочечников, почек, щитовидной железы.,

Прессорные влияния на сердечнососудистый аппарат осуществляются непосредственно через симпатическую нервную систему, нейромедиа-тором к-рой является норадреналин (см.). Активация симпатоадреналовых механизмов, включающих действие гормонов гипофиза на надпочечники, вызывает повышенную секрецию адреналина (см.) и кортикостероидов (см.). Катехоламины при этом оказывают стимулирующее действие на а- и p-адренорецепторы сердца и сосудов. Вовлечение гипофизарных гормональных механизмов в прессорные реакции также приводит к увеличению секреции альдостерона и антидиуретического гормона, которые, повышая реабсорбцию солей и всасывание воды, увеличивают объем циркулирующей крови (см. Вазопрессин).

Мощное прессорное действие оказывают ренин-ангиотензинные системы (см. Ангиотензин). Сам ренин (см.), образующийся в юкстагломерулярном аппарате почек, малоактивен и выполняет пусковую роль, определяя концентрацию ангиотензина II в крови, который является продуктом взаимодействия ренина с ангиотензиногеном и оказывает прямое прессорное действие. Установлено, что секреция ренина также находится под контролем симпатоадреналовых механизмов, которые вместе с катехоламинами стимулируют образование ренина. Депрессорные реакции сердечно-сосудистого аппарата возникают при понижении активности симпатоадреналовых и ренин-ангиотензинных механизмов. Одним из механизмов регуляции уровня АД является регуляция почечного диуреза. Удаление избыточной воды через почки вызывает уменьшение внеклеточной жидкости, снижение объема циркулирующей крови и уменьшение сердечного выброса (см. Кровообращение).

Установлено, что ряд гуморальных факторов оказывает выраженное депрессорное действие. К ним относят почечные простагландины (см.), а также кинины (см.). Эти вещества участвуют в регуляции почечного кровотока и выделения солей натрия и воды. Кинины крови обладают генерализованным действием. Образующийся в крови брадикинин оказывает депрессорное действие, непосредственно влияя на стенку мелких артерий. Кининовые и ренин-ангиотензинные системы тесно связаны с ферментами — кининазой II и карбоксикатепсинами, которые конвертируют переход ангиотензина I в ангиотензин II и инактивируют кинины.

Кроме того, существуют механизмы непосредственного влияния уровня К. д. на физиол, активность сосудодвигательных центров. Так, повышение К. д. в сосудах головного мозга снижает тонус его прессорных центров.

Состояние бульбарных вегетативных центров и гипофиза координируется высшими центрами вегетативной саморегуляции, включающими структуры лимбико-гипоталаморетикулярного комплекса (см. Лимбическая система).

В саморегуляции АД инициативная роль принадлежит сосудистым барорецепторам (см. Ангиоцепторы). При повышении АД возбуждение сосудистых барорецепторов, особенно аортальной и синокаротидной рефлексогенных зон, приводит к возрастанию частоты импульсаций в депрессорных и синусных нервах. Периодическая фазная активность при этом сменяется непрерывной импульсацией. Характерно, что частота импульсаций в депрессорных нервах (синусных и аортальных) нарастает в зависимости от крутизны и уровня повышения АД и своими физиол, реакциями барорецепторы охватывают весь диапазон возможных изменений АД. Эта афферентная импульсация приводит к активации центральных депрессорных механизмов, влияющих на сосудодвигательные центры (см.) и уменьшающих тонические симпатические реакции сердца и сосудов.

Нейрофизиол, исследования указывают на то, что повышение АД при эмоциональном перенапряжении связано в первую очередь с возрастанием тонических прессорных влияний лимбико-ретикулярных образований мозга на бульбарные симпатические сосудосуживающие отделы сосудодвигательного центра.

В результате гипертензивные сосудосуживающие влияния оказывают более мощное действие, чем противоположная им депрессорная активность, что и обеспечивает преобладание прессорных реакций над депрессорными.

На нейронах эмоциогенных зон мозга, включающих структуры лимбико-ретикулярного комплекса, и нейронах высших центров вегетативной регуляции происходит интеграция множества влияний, отражающих эмоциональное состояние человека и животных, поведенческие реакции, мышечную активность и барорецепторную депрессорную импульсацию. В результате этой интеграции на периферию выходит комплекс нейрогуморальных влияний, определяющих соотношение ранее описанных прессорных и депрессорных реакций, от которых в конечном счете зависит уровень К. д. Взаимодействием этих механизмов определяется оптимальный уровень К. д. здорового человека. == Кровяное давление у детей ==

С возрастом показатели К. д. у детей повышаются и зависят от многих эндогенных и экзогенных факторов.

Наиболее низкое систолическое К. д. наблюдается у новорожденных (ок. 70 мм рт. ст.); в последующие недели оно постепенно повышается до 80—90 мм рт. ст. Артериальное К. д. как у мальчиков, так и у девочек нарастает наиболее быстро на первом году жизни. На втором-третьем году жизни оно увеличивается в меньшей степени. В период от 4 до 7 лет уровень артериального К. д. изменяется мало. У детей в возрасте 7 лет уровень систолич. давления находится обычно в пределах 80—110 мм рт. ст., у детей 8 — 13 лет — 90—120 и у детей 14—17 лет — 90 —130 мм рт. ст.

Пределы колебаний диастолического давления распределяются следующим образом: в возрасте 7 лет оно составляет 40—70 мм рт. ст., в возрасте 8—15 лет — 50—80, 16 —17 лет — 60—80 мм рт. ст. Наиболее резкое повышение уровня артериального К. д. отмечено у девочек в возрасте 12—14 лет, а у мальчиков — к 14—16 годам. Показатели артериального К. д. до 12 лет у девочек и мальчиков одинаковы; в 13—14 лет у девочек оно выше, чем у мальчиков. В возрасте 15—16 лет эти показатели у мальчиков выше. У детей сельской местности показатели К. д. ниже и колеблются в более узких границах, чем у детей, проживающих в городах.

Величина артериального К. д. у детей может изменяться при перемене положения тела: максимальное артериальное давление при переходе из положения сидя в горизонтальное повышается на 10—20 мм рт. ст. Заметно повышается АД у грудных детей во время сосания (на 4—20 мм рт. ст.). По окончании акта сосания оно в течение 3—4 мин. возвращается к норме. При перегревании тела (в жаркий день) уровень АД у детей снижается; при охлаждении оно повышается. Значительное влияние на величину АД оказывают положительные и отрицательные эмоции, результатом которых является чаще всего повышение максимального давления, иногда на 30—32 мм рт. ст. АД меняется обычно к концу учебного дня, повышаясь или понижаясь в пределах 20 мм рт. ст., особенно сильно это заметно по окончании учебного полугодия. Величина АД при прочих равных условиях зависит и от способа его определения. Чаще К. д. у детей измеряют аппаратом Рива-Роччи по методу Короткова — Яновского; удобен для измерения К. д. в любом возрасте сфигмотоноосциллометр, выпускаемый заводом «Красногвардеец», снабженный набором возрастных манжет и позволяющий пользоваться звуковым, осциллометрическим и осциллографическим методами. Помимо показателей систолического и диастолического уровней АД, в педиатрической практике для более подробного изучения состояния гемодинамики определяют давление среднее, боковое, истинное пульсовое и гемодинамический удар. Этот метод позволяет получить более полное и точное представление о показателях К. д., которые с возрастом увеличиваются.

Венозное давление, определяемое обычно прямым методом с помощью флеботонометра (см. Флеботонометрия), в зависимости от возраста колеблется между 40 и 100 мм вод. ст. и одинаково на обеих руках. У легковозбудимых детей в результате крика, плача и беспокойства венозное давление может подниматься до 120 мм вод. ст. Поэтому нормы, относящиеся к младшему возрасту, нельзя считать достоверными. Для суждения о высоте венозного давления можно пользоваться методом прямого наблюдения за сосудистым тонусом, в основу к-рого положена функц, нагрузка сосудистой системы. Высота венозного давления определяется дважды: в момент сжатия вен и при открытии их после образования застоя. По данным А. П. Беловой, у здоровых детей в возрасте 7—10 лет первое давление колеблется от 15 до 30 мм рт. ст., а второе — от 35 до 50 мм рт. ст. У детей в возрасте 10—15 лет соответствующие цифры составляют 18—34 мм рт. ст. и 40— 55 мм рт. ст. Основным преимуществом этого метода является его бескровность и легкость технического выполнения.

Давление в сердечных камерах определяется при катетеризации сердца (см.). В полостях сердца давление колеблется в следующих пределах: в правом предсердии — от 2 до 5 мм рт. ст., в правом желудочке — от 20 до 30 мм рт. ст., в левом предсердии — от 4 до 6 мм рт. ст., в левом желудочке — от 70 до 110 мм рт. ст.

Давление в легочной артерии составляет: максимальное — 20—30, минимальное — 7—9, среднее 12—13 мм рт. ст. Давление в легочных капиллярах составляет 6 — 7 мм рт. ст., в легочных венах — 4—6 мм рт. ст.

Изменения кровяного давления в пожилом и старческом возрасте

С возрастом АД повышается. Однако даже у долгожителей средний уровень АД не превышает 150/90 мм рт. ст. Основной причиной повышения АД, и в первую очередь его систолического уровня, является снижение эластических свойств крупных артериальных стволов, в частности аорты, в результате склеротических изменений. Резкому повышению АД препятствуют увеличение объема аорты и снижение сердечного выброса. Изменения К. д. в различных сосудистых зонах неравномерны.

С возрастом снижается венозное К. д., что связано с расширением венозного русла, снижением тонуса и эластичности венозной стенки, а также снижением общего мышечного тонуса. Капиллярное давление крови практически с возрастом не изменяется.

В пожилом и старческом возрасте ослабевают нервно-рефлекторные механизмы и увеличивается значение гуморальных механизмов регуляции уровня К. д.

Восстановление величины К. д. до исходного уровня при функц, нагрузках происходит замедленно. Величины давления крови в легочной артерии и внутрисердечного давления в полостях правого отдела сердца в период систолы и диастолы практически не отличаются от аналогичных показателей для лиц более молодого возраста. В то же время давление в левом желудочке выше, чем у молодых. Это связано с увеличением остаточного объема крови вследствие повышения общего периферического сопротивления в большом круге кровообращения. Из-за ослабления сократительной способности миокарда снижается и скорость подъема внутрижелудочкового давления крови.

Патологические изменения кровяного давления

Изменения К. д. являются симптомами патологии системы кровообращения или систем его регуляции. Выраженные изменения К. д. сами по себе становятся патогенетическим фактором в развитии нарушений общего кровообращения и регионарного кровотока.

Изменения К. д. в полостях сердца наблюдаются при поражениях миокарда, значительных отклонениях величин К. д. в центральных артериях и венах, а также при нарушениях внутрисердечной гемодинамики, обусловленных врожденными или приобретенными пороками сердца и крупных сосудов (см. Внутрисердечное давление).

Патол, повышение К. д. в магистральных артериях может быть обусловлено увеличением ударного и минутного объемов сердца, повышением кинетики сердечного сокращения, ростом периферического сопротивления кровотоку и ригидностью стенок артериальной компрессионной камеры (см. Гипертензия артериальная). Так как регуляция К. д. осуществляется сложными нейрогуморальными механизмами, артериальная гипертензия может быть симптомом: болезней почек — гломерулонефрит (см.), пиелонефрит (см.), почечнокаменная болезнь (см.); гормонально-активных опухолей — альдостерома (см.), Иценко-Кушинга болезнь (см.), кортикостерома (см.), параганглиома (см.), феохромоцитома (см.); тиреотоксикоза (см.), органических заболеваний ц. Н. с., гипертонической болезни (см.). Причиной повышения К. д. в сосудах малого круга кровообращения (см. Гипертензия малого круга кровообращения) могут быть заболевания легких и легочных сосудов, плевры, грудной клетки, а также патология сердца. Устойчивая артериальная гипертензия приводит к гипертрофии сердца, развитию дистрофии миокарда и может быть причиной сердечной недостаточности (см.).

Патол, снижение артериального К. д. может быть следствием поражения миокарда, в т. ч. острого (напр., кардиогенный шок), снижения периферического сопротивления кровотоку, кровопотери, секвестрации крови в емкостных сосудах при недостаточности венозного тонуса (коллапс, кровопотеря, ортостатические расстройства кровообращения). Устойчивая артериальная гипотензия (см. Гипотензия артериальная) наблюдается при заболеваниях, сопровождающихся недостаточностью гипофиза, надпочечников. При окклюзии артериальных стволов К. д. снижается только дистальнее места окклюзии. Значительное снижение К. д. в центральных артериях вследствие гиповолемии включает адаптационные механизмы так наз. централизации кровообращения — перераспределения крови преимущественно в сосуды . мозга и сердца при резком повышении тонуса сосудов на периферии. При недостаточности этих компенсаторных механизмов возможны обморок (см.), ишемические повреждения мозга (см. Инсульт, Кризы) и миокарда (см. Ишемическая болезнь сердца).

Повышение венозного давления наблюдается либо при наличии артериовенозных шунтов, либо при нарушениях оттока крови из вен, напр, в результате их сдавливания. При циррозах печени развивается портальная гипертензия (см.); повышение К. д. в правом или левом предсердиях (при пороках сердца, сердечной недостаточности) ведет к системному повышению давления в венах большого или малого круга кровообращения.

Изменения капиллярного давления обычно являются следствием первичных изменений К. д. в артериях или венах и сопровождаются нарушениями кровотока в капиллярах, а также процессов диффузии и фильтрации на капиллярных мембранах (см. Микроциркуляция). Гипертензия в венозной части капилляров приводит к развитию отеков (см. Отек) — общих (при системной венозной гипертензии) или местных, что наблюдается при флеботромбозе (см.), сдавлении вен (напр., Стокса воротник). Повышение капиллярного К. д. в малом круге кровообращения лежит в основе развития отека легких (см.).

Методы и приборы для измерения кровяного давления

В практике клин, и физиол, исследований сложились и широко используются методы измерения артериального, венозного и капиллярного давления в большом круге кровообращения, в центральных сосудах малого круга, в сосудах отдельных органов и частей тела.

К. д. представляет собой динамическую величину, изменяющуюся в течение сердечного цикла и от цикла к циклу. Точная информация о К. д. представляется непрерывной последовательностью его мгновенных значений. Для характеристики К. д. могут быть использованы также и дискретные показатели — экстремальные, средние или другие его значения.

Все виды измерений К. д. можно отнести к трем классам: а) измерения, при которых измеряемая величина передается непосредственно на измерительный прибор; б) измерения, при которых измеряемая величина К. д. активно уравновешивается внешним давлением (противодавлением) и оно передается на измерительный прибор; в) измерения, при которых измеряемая величина находится расчетно или косвенно — по данным измерения величин, отличных от измеряемой. Эти измерительные принципы можно обозначить соответственно как прямые, непрямые и косвенные.

Прямое измерение кровяного давления (прямая манометрия) осуществляется непосредственно в сосуде или полости сердца, куда вводится заполненный изотоническим р-ром катетер, передающий давление на внешний измерительный прибор, или зонд с измерительным преобразователем на вводимом конце (см. Катетеризация).

Впервые прямое измерение К. д. (у лошади) осуществил в 1733 г. Хейлс (S. Hales). В 1831 г. Пуазейлем (J. Poiseuille) был предложен специальный прибор для измерения АД, который представлял собой U-образную трубку, заполненную ртутью. В 1847 г. К. Людвиг дополнил ртутный манометр поплавком, снабженным пером, благодаря чему была создана графическая регистрация К. д. В 1861 г. Э. Мареем были предложены мембранные регистрирующие приборы для записи различных механических физиол, явлений, в т. ч. К. д. в полостях сердца и сосудов. Более совершенный мембранный манометр для регистрации К. д. был создан в 1888 г. Гюртле (K. Hurthle).

Основные принципы прямого манометрического измерения К. д. сформулированы Франком (О. Frank) в 1903 г., показавшим, что главной характеристикой, определяющей динамические качества манометра, является собственная частота колебаний столба жидкости в системе гидравлической передачи (f0), выражаемая зависимостью:

f0 = d/(4πρLC),

где d — диаметр канала катетера, ρ — плотность жидкой среды в катетере, L — длина катетера, С — объемное смещение измерительного устройства, выражающееся отношением объемного перемещения столба жидкости в катетере к действующему давлению, характеризует мягкость, податливость системы.

Для качественной записи необходимо, чтобы величина f0 значительно превосходила частоту наиболее высокочастотных компонентов исследуемого процесса. Выполнение этого условия при все возрастающих требованиях к граничной регистрируемой частоте процесса является главным направлением совершенствования Манометров для прямого измерения К. д. Так как диаметр и длина катетеров определяются условиями их введения в тот или иной сосуд и сильно меняться не могут, единственным параметром, за счет к-рого повышаются динамические свойства измерительной системы, является объемное смещение мембраны манометра. Для оптических манометров оно находилось на уровне 1 мм3/100 мм рт. ст., для электронных манометров — 0,05 мм3/100 мм рт. ст., достигая 0,01 мм3/100 мм рт. ст. у лучших приборов. По совокупности характеристик статической и динамической точности современные электроманометры для измерения давления в сердце и сосудах находятся на уровне уникальных средств измерения давления, не имеющих аналогов среди приборов общетехнического назначения.

В 50—60-е гг. прямую манометрию стали объединять с ангиографией, внутриполостной фонокардиографией, электрогисографией и др. Характерной чертой современного развития прямой манометрии является компьютеризация и автоматизация обработки получаемых данных.

Прямое измерение К. д. осуществляется практически в любых участках сердечно-сосудистой системы и служит базовым методом, по к-рому проверяются непрямые и косвенные измерения К. д. Достоинством их является возможность одновременного отбора проб крови для биохим, анализов и введения в кровеносное русло необходимых лекарственных средств и индикаторов.

Основным недостатком прямых измерений является необходимость проведения в кровяное русло элементов измерительного устройства, что требует строгого соблюдения асептических условий проведения исследования, ограничивает возможность повторных измерений. Некоторые виды измерений (катетеризация полостей сердца, сосудов легких, почек, мозга) фактически являются хирургическими операциями и выполняются только в условиях стационара, т. к. требуют анестезии, могут сопровождаться осложнениями.

Измерение давления в полостях сердца и центральных сосудах. Прямая манометрия — единственный способ измерения К. д. в них и осуществляется путем катетеризации полостей сердца и центральных сосудов или их пункции (см. Катетеризация сердца, Сердце, методы исследования). Измеряемыми величинами являются мгновенное давление в полостях, среднее давление и другие показатели, которые определяются посредством регистрирующих или показывающих манометров.

Входным звеном электроманометра является датчик. Его чувствительный элемент — мембрана непосредственно контактирует с жидкой средой, по к-рой передается давление. Перемещения мембраны, обычно составляющие доли микрона, воспринимаются как изменения электрического сопротивления, емкости или индуктивности, преобразуемые в электрическое напряжение, измеряемое выходным прибором.

Метод является ценным источником физиол, и клин, информации, используется для диагностики, в частности диагностики пороков сердца, контроля эффективности оперативной коррекции нарушений центрального кровообращения, при длительных наблюдениях в условиях реанимации и во многих других случаях.

Прямое измерение артериального давления у человека проводится лишь в случаях, когда необходимо постоянное и длительное наблюдение за уровнем К. д. с целью своевременного обнаружения его опасных изменений. Такие измерения широко входят в практику наблюдения за больными в палатах интенсивного наблюдения, блоках реанимации. Они проводятся также во время хирургических операций.

Измерение АД выполняется аналогично измерению внутрисердечного давления. Используемые при этом технические средства имеют много общего с теми, которые применяются для внутрисердечных измерений. Однако при измерении АД нет необходимости в длительной его регистрации, и производится автоматическое определение максимального и минимального значений К. д. в каждом сердечном цикле.

Измерение венозного давления. Венозное давление надежно измеряется только прямым методом. Устойчивые показания имеет давление в верхней и нижней полой вене, среднединамическое значение к-рого обозначается как центральное венозное давление (ЦВД). В периферических венах давление отличается вариабельностью.

К числу серийно производимых приборов для измерения венозного давления относится «Аппарат для определения венозного давления», выпускаемый Ленинградским производственным объединением «Красногвардеец». Прибор представляет собой сообщающиеся между собой систему капельного внутривенного вливания жидкости, манометрическую трубку и резиновый шланг с инъекционной иглой на конце. Прибор может работать в режиме быстрой флеботонометрии (см.), при к-ром система капельного вливания отключена, и в режиме длительной флеботонометрии, при к-ром из системы капельного вливания постоянно поступает жидкость в измерительную магистраль и из нее в вену. Это исключает тромбирование иглы и создает возможность длительного измерения венозного давления.

Простейшие измерители венозного давления содержат лишь шкалу и манометрическую трубку из пластического материала, предназначенную для однократного использования. В совокупности с типовыми системами переливания крови разового использования измерители венозного давления разового использования образуют систему, принципиально равноценную рассмотренному выше прибору.

Для измерения венозного давления используются также электронные манометры. Их основным преимуществом является возможность измерения не только ЦВД, но и давления в правых отделах сердца и легочной артерии. Измерение ЦВД осуществляется через тонкий полиэтиленовый катетер, который вводят либо в локтевую подкожную, либо в подключичную вену. При длительных измерениях катетер остается присоединенным и может использоваться для взятия проб крови, введения лекарственных препаратов. Измерение ЦВД широко используется в интенсивной терапии, реанимации, для контроля за состоянием оперируемого и для дифференциальной диагностики недостаточности правого желудочка.

Измерение капиллярного давления. Прямое измерение капиллярного давления принципиально выполняется аналогично другим инвазивным измерениям К. д. Однако измерение проводится в одиночном капилляре, давление в к-ром не отражает общесистемный уровень этого показателя, и передача давления осуществляется через микроканюлю с большими динамическими искажениями. Поэтому прямые измерения капиллярного давления не имеют клин, значения. Однако их выполнение как у экспериментальных животных, так и у человека весьма важно для понимания процессов микроциркуляции.

Первое прямое измерение капиллярного давления осуществлено в 1923 г. Каррьером и Ребергом (Е. В. Carrier, Р. В. Rehberg). Надежные же величины капиллярного давления впервые получил Лендис (E. М. Landis) в 1926 г., измерив микропипеткой среднее давление в капиллярах брыжейки лягушки, а в 1930 г.— в капиллярах ногтевого ложа человека. Для визуализации сосудов используются стереоскопические и телевизионные микроскопы, для измерения давления — электро-манометры; стало возможным осуществлять запись динамического внутрикапиллярного давления.

Для измерения среднего капиллярного давления микроканюлю, соединенную с манометром и источником внешнего давления и заполненную физиол, р-ром, с помощью микроманипулятора под контролем микроскопа вводят в капилляр или его боковую ветвь. Среднее давление устанавливают и о величине создаваемого внешнего (задаваемого и регистрируемого манометром) давления, при к-ром возникает остановка кровотока в капилляре. Для получения экстремальных значений капиллярного давления используют непрерывную его запись после введения микроканюли в сосуд.

Непрямое измерение кровяного давления осуществляется без нарушения целостности сосудов и тканей. Полная атравматичность даже при известном снижении точности делает эти измерения весьма ценными, открывает возможность их широкого применения, в частности для неограниченных повторных исследований.

Непрямое измерение К. д. осуществляется путем уравновешивания давления внутри сосуда известным внешним давлением через его стенку и мягкие ткани тела. Методы, основанные на этом принципе, получили название компрессионных. К ним относятся все непрямые методы измерения К. д., кроме метода измерения венозного давления по Гертнеру (G. Gartner).

Компрессионные методы различаются способом создания компрессирующего давления и выбором критерия идентификации момента равновесия компрессирующего и внутрисосудистого давлений. Компрессирующее давление может создаваться жидкостью, воздухом или твердым телом и передаваться на поверхность тела непосредственно или через эластичную мембрану. Преимущественное применение имеет компрессия воздухом через мягкую мембрану, что обеспечивает более точную передачу внешнего давления. Большое значение при этом имеют конфигурация и размеры компрессирующего устройства, его соответствие той части тела, с к-рой оно сопрягается. Наиболее адекватным является компрессирование надувной манжетой, накладываемой вокруг конечности или сосуда и обеспечивающей равномерное циркуляторное сжатие находящихся внутри нее тканей и сосудов. Впервые компрессионная манжета была предложена Рива-Роччи (S. Riva-Rocci) в 1896 г. для измерения АД.

Изменения внешнего по отношению к кровеносному сосуду давления в ходе измерения К. д. могут иметь характер медленного плавного повышения давления (компрессия), плавного понижения ранее созданного высокого давления (декомпрессия), а также следовать изменениям внутрисосудистого давления. Первые два режима используются для определения дискретных показателей К. д. (максимального, минимального и др.), третий — для непрерывной регистрации К. д. аналогично методу прямого измерения.

В качестве критериев идентификации равновесия внешнего и внутрисосудистого давлений используют звуковые, пульсовые явления, изменения кровенаполнения тканей и кровотока в них, а также другие феномены, вызванные сжатием сосудов.

Измерение артериального давления. Основными измеряемыми величинами являются систолическое, или максимальное, диастолическое, или минимальное, и среднее, или среднединамическое, давление. Обычно измеряют давление в плечевой артерии, в к-рой оно близко аортальному. В ряде случаев измеряют давление в артериях пальцев рук, бедра, голени и других областей тела.

Пульсовые методы основаны на измерении вследствие компрессии характера пульсации артерии в ее дистальной части. Методы используют для оценки систолического АД. Простейшим является пальпаторный метод, предложенный Рива-Роччи в 1896 г. Измерение осуществляют следующим образом. На среднюю часть плеча надевают компрессионную манжету и быстро поднимают в ней давление до уровня, заведомо превышающего ожидаемое систолическое давление. Артерия при этом пережимается, и пульсация в ней прекращается. Затем, медленно выпуская воздух из манжеты, пальпаторно определяют появление пульса в лучевой артерии и по манометру отмечают уровень давления в манжете в этот момент. Оно соответствует систолическому АД. Инструментальным вариантом этого метода является сфигмоманометрия (см.), при к-рой вместо субъективной пальпации используется объективная регистрация пульса в дистальном отрезке артерии, а также внешнего давления.

Звуковой, или аускультативный, метод имеет в своей основе открытый в 1905 г. Н. С. Коротковым феномен звучания артерии при сдавливании ее извне. Н. С. Коротков установил, что если на артерию подать внешнее давление, превышающее диастолическое, в ней возникают звуки (тоны, шумы), которые прекращаются, как только внешнее давление превысит систолический уровень. Прослушивая с помощью фонендоскопа плечевую артерию в локтевом изгибе в процессе ее декомпрессии, определяют моменты появления и прекращения звуков и отмечают по манометру соответствующие этим моментам уровни внешнего давления. Первый уровень соответствует систолическому, второй — диастолическому давлению.

Для измерения величины К. д. звуковым или пульсовым способами применяют сфигмоманометры. В СССР выпускают два типа сфигмоманометров: ПМР (с ртутным манометром), обладающий диапазоном измерения 0 — 260 мм рт. ст. с погрешностью измерения в пределах ± 3 мм рт. ст., и ПМП (с мембранным манометром), измеряющий давление в диапазоне 20 — 300 мм рт.ст. с погрешностью ± 4 мм рт. ст.

Звуковой метод имеет инструментальные варианты, в которых аускультация заменена объективным восприятием звуковых явлений микрофоном. В таких приборах сигнал микрофона визуализируется световым индикатором или управляет стрелочным или цифровым указателем систолического и диастолического давления.

Волюмометрический метод основан на изменении кровенаполнения дистального участка конечности при сжатии питающей ее артерии. Изменения наполнения определяют пле-тизмографически (см. Плетизмография); метод предложен М. В. Яновским и А. И. Игнатовским в 1907 г. В ходе компрессии артерии регистрируют уровень давления в компрессионной манжете. На плетизмограмме сначала появляется подъем, обусловленный прекращением венозного оттока из конечности. Когда же пережимается и артерия, кровь в конечность перестает поступать и подъем на плетизмограмме прекращается, что соответствует достижению систолического давления в артерии. .

Волюмометрический метод более чувствителен, чем сфигмографический, и используется для измерения К. д. преимущественно в экспериментальной практике у мелких лабораторных животных.

Осцилляторный метод основан на том, что в результате динамического взаимодействия пульсирующего сосуда и компрессирующей его манжеты в последней возникают пульсации давления (осцилляции), характер которых изменяется в зависимости от соотношений уровней давления внутри сосуда и вне его. При увеличении внешнего давления выше диастолического уровня имеет место рост амплитуды осцилляций. Их максимум наблюдается, когда внешнее давление достигает среднединамического значения. Когда внешнее давление становится равным систолическому, осцилляции практически прекращаются. Метод предложен Э. Мареем в 1886 г., получил развитие в модификации Л. И. Ускова (1908).

Амплитуда осцилляций может оцениваться визуально по показаниям дифференциального манометра (осциллометрический метод). Для более точного анализа характера осцилляций используется их регистрация (артериальная осциллография).

Артериальная осциллография (см.) осуществляется путем графической регистрации двух процессов: уровня компрессирующего давления и осцилляций в манжете. Н. К.Савицкий (1956) предложил регистрировать осцилляции в форме тахоосциллограммы с помощью механо-кардиографа (см. Механокардиография). Тахоосциллографический метод измерения АД имеет большое значение в педиатрии, когда трудно использовать звуковой метод, а также в экспериментах на животных. Осциллографический метод пригоден для измерения конечного систолического, бокового систолического, среднего и диастолического давления.

Разновидностью осцилляторного метода является фазовый метод. В основе его лежит представление, что при компрессировании артерии давлением, превышающим диастолический уровень, пульсация в дистальной части конечности начинает запаздывать; момент появления запаздывания идентифицируется как диастолическое давление. Систолическое давление определяется по прекращению пульсации в дистальной манжете.

Метод непрерывного измерения среднего АД основан на поддержании внешнего давления на уровне максимума осцилляций в компрессионной манжете, наблюдаемого при равенстве давления среднему динамическому. Метод предложен В. А. Реэбеном и М. А. Эйлер в 1963 г. Для этого используют две компрессионные. манжеты, накладываемые на два пальца руки. В них подают давления, различающиеся на 30 мм рт. ст., и поддерживают на таком уровне, при к-ром осцилляции в обеих манжетах имеют одинаковую амплитуду. Это значит, что в одной из них давление еще не достигло уровня максимальных осцилляций, в другом — уже превысило его. Среднее значение находится как полусумма двух внешних давлений.

Предложенный измерительный принцип отличается высокой устойчивостью и повторяемостью результатов. Специальными исследованиями показано близкое совпадение получаемых данных с данными прямой манометрии. Метод технически реализован в приборе P АС АД, производимом Ленинградским производственным объединением «Красногвардеец». Прибор имеет следующие характеристики: диапазон измерения 0 — 200 мм рт. ст., максимальная погрешность измерения + 5 мм рт. ст.

Измepение венозного давления. Для непрямого измерения венозного давления предложены две группы методов: компрессионные, при которых уравновешивание измеряемого давления достигается внешней компрессией, и гидростатические, когда положение тела или его частей изменяется таким образом, чтобы уменьшить гидростатическое давление в области измерения и довести его до уровня атмосферного. Компрессионные методы оказались недостоверными и не получили применения. Их малая точность прежде всего связана с трудностью передачи без искажения на сосуд давления такого низкого уровня, какое наблюдается в венах. Сложна также и индикация состояния уравновешивания давления в сосуде. Гидростатические методы свободны от первого недостатка. Достижение необходимого соотношения внешнего и внутрисосудистого давления в них не требует наложения на поверхность тела и крепления каких-либо устройств.

Наиболее просто измерение осуществляется методом Гертнера: наблюдая за тыльной поверхностью руки при ее медленном поднятии, отмечают на какой высоте спадаются вены. Расстояние от уровня предсердия до этой точки служит показателем венозного давления.

Погрешность этого метода также велика ввиду отсутствия четких критериев полного уравновешивания внешнего и внутрисосудистого давлений. Тем не менее простота и доступность делают его полезным для ориентировочной оценки венозного давления.

Более совершенен гидростатический метод измерения центрального венозного давления (ЦВД), предложенный В. А. Дегтяревым и соавт. в 1978 г. Обследуемого с помощью поворотного стола медленно переводят из горизонтального положения в вертикальное и наблюдают за изменением характера пульсаций в манжете, наложенной вокруг шеи. Величину падения гидростатического давления считают равной ЦВД, когда в рисунке пульсации исчезает компонент венного пульса. Результаты измерения имеют близкие значения к данным прямых измерений ЦВД.

Измерение капиллярного давления. Первые непрямые измерения капиллярного давления были осуществлены Крисом (N. Kries) в 1875 г. путем наблюдения за изменением цвета кожи под действием приложенного извне давления. Величина давления, при к-рой кожа начинает бледнеть, принимается за давление крови в поверхностно расположенных капиллярах. Современные непрямые методы измерения давления в капиллярах основаны также на компрессионном принципе.

Компрессию осуществляют прозрачными маленькими жесткими камерами разных конструкций или прозрачными эластическими манжетами, которые накладывают на исследуемую область (кожу, ногтевое ложе и др.). Место сжатия хорошо освещают для наблюдения за сосудистой сетью и кровотоком в ней под микроскопом. Капиллярное давление измеряют в ходе компрессии или декомпрессии микрососудов. В первом случае систолическое давление устанавливают по компрессионному давлению, при к-ром произойдет остановка кровотока в большинстве видимых капилляров, во втором — по уровню компрессионного давления, при к-ром в нескольких капиллярах возникнет кровоток. Непрямые методы измерения капиллярного давления дают значительные расхождения результатов.

Косвенные методы измерения кровяного давления. Метод измерения систолического давления в легочной артерии предложен в 1967 г. Берстином (L. Burstin). Основан на измерении длительности сердечного цикла и периода изометрического расслабления правого желудочка, который определяется от начала легочного компонента II тона на фоно-кардиограмме до начала диастолического коллапса на флебограмме яремной вены. По этим величинам, пользуясь предложенной автором номограммой, находят искомые значения давления в легочной артерии. При сравнении полученных данных с результатами прямого измерения давления в легочной артерии отмечается достаточно хорошее совпадение .

Е. К. Лукьяновым в 1971 г. разработан метод исследования динамической структуры венозного возврата по данным флебографии, который позволяет косвенно оценивать степень венозной гипертензии. Метод основывается на том, что пульсовые объемные колебания, воспринимаемые как венный пульс, являются результатом равномерного венозного притока крови с периферии и пульсирующего оттока ее к сердцу. Исходя из этого удалось разложить флебограмму на два компонента, один из которых представляет собой графический образ объемного притока крови к центральным венам, а другой — графический образ объемного оттока крови от них к сердцу. Последний процесс представлен ступенчатой кривой, отражающей фазный характер возврата крови к сердцу; кривая дает возможность определить длительность фаз венозного притока (в долях ударного объема сердца) и относительные величины притока в каждую фазу.



Библиография: Гайтон А. Физиология кровообращения, пер. с англ., М., 1969; Геронтология и гериатрия. 1972, Ежегодник, под ред. Д. Ф. Чеботарева, с. 101, Киев, 1973; Д e м б о А. Г., Л e в и н М. Я. и Л e в и н а Л. И. Артериальное давление у спортсменов, М., 1969; К о н р а д и Г. П. Регуляция сосудистого тонуса, Л., 1973, библиогр.; Кровообращение и старость, под ред. Д. Ф. Чеботарева, Киев, 1965; М а к а р о в а Е. И. и Ф p e й д и н Г. С. О стандартизации метода измерения кровяного давления у детей, Педиатрия, № 6, с. 41, 1961; Марков X. М. Патофизиология артериальной гипертонии, София, 1970, библиогр.; ПаринВ. В. иМеер-с о н Ф. 3. Очерки клинической физиологии кровообращения, М., 1965, библиогр.; С а в и ц к и й H. Н. Биофизические основы кровообращения и клинические методы изучения гемодинамики, Л., 1974, библиогр.; С т у д e н и к и н М. Я. и А б-дуллаев А. Р. Гипертонические и гипотонические состояния у детей и подростков, М..U 973, библиогр.; Суда ков К. В. Проблема регуляции артериального давления, Усп. физиол, наук, т. 3, №1,с. 101, 1972, библиогр.; Токарь А. В. Артериальная гипертония и возраст, Киев, 1977, библиогр.; Тонких А. В. Гипоталамо-гипофизарная область и регуляция физиологических функций организма, Л., 1968, библиогр.; У г л о в Ф. Г., H е- класов Ю. Ф. и Г e р а с и н В. А. Катетеризация сердца и селективная ангиокардиография, Л., 1974, библиогр.; Удельнов М. Г. Физиология сердца, М., 1975; Фолков Б. и Нил Э. Кровообращение, пер. с англ., М., 1976; Burton А. С. Physiologie und Biophysik des Kreislaufs, Stuttgart—N. Y., 1969, Bibliogr.; Cardiac catheterization and angiography, ed. by W. Grossman, Philadelphia, 1974; Feurstein V. Grundlagen und Ergebnisse der Yenendruckmessung zur Priifung des Zirkulierenden Blutvolumens, B., 1965; M a h 1 e r F., M u h e i m M. H. a. Intaglietta M. Continius measurement of pressure in human nailfold capillaries, Bibi. anat. (Basel), № 16, p. 109, 1977; Russell W. J. Central venous pressure, L., 1974, bibliogr.; S с h г о е-d e г J. S. a. Daily E. К. Techniques in bedside hemodynamic monitoring, St Louis, 1976*




Популярные статьи

Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание

Поделиться: