ВОДНО-СОЛЕВОЙ ОБМЕН

ВОДНО-СОЛЕВОЙ ОБМЕН — совокупность процессов поступления воды и солей (электролитов) в организм, распределения их во внутренней среде и выведения. Системы регуляции В.-с. о. обеспечивают постоянство суммарной концентрации растворенных частиц, ионного состава и кислотно-щелочного равновесия, а также объема и качественного состава жидкостей организма.

Организм человека состоит в среднем на 65% из воды (от 60 до 70% от веса тела), к-рая находится в трех жидкостных фазах — внутриклеточной, внеклеточной и трансцеллюлярной. Наибольшее количество воды (40—45%) находится внутри клеток. Внеклеточная жидкость включает (в процентах от веса тела) плазму крови (5%), межклеточную жидкость (16%) и лимфу (2%). Трансцеллюлярная жидкость (1 — 3%) изолирована от сосудов слоем эпителия и по своему составу близка к внеклеточной. Это — спинномозговая и внутриглазная жидкости, а также жидкости брюшной полости, плевры, перикарда, суставных сумок и жел.-киш. тракта.

Водный и электролитный балансы у человека рассчитываются по суточному потреблению и выделению воды и электролитов из организма. Вода поступает в организм в виде питья — примерно 1,2 л и с пищей — примерно 1 л. Ок. 0,3 л воды образуется в процессе обмена веществ (из 100 г жиров, 100 г углеводов и 100 г белков образуется 107, 55 и 41 мл воды соответственно). Суточная потребность взрослого человека в электролитах составляет примерно: натрий — 215, калий — 75, кальций — 60, магний — 35, хлор — 215, фосфат — 105 мг-экв в день. Эти вещества всасываются в жел.-киш. тракте и поступают в кровь. Временно они могут депонироваться в печени. Избыток воды и электролитов выводится почками, легкими, кишечником и кожей. В среднем за сутки выделение воды с мочой составляет 1,0— 1,4 л, с калом — 0,2 л, кожей и с потом — 0,5 л, легкими — 0,4 л.

Вода, поступившая в организм, распределяется между различными жидкостными фазами в зависимости от концентрации в них осмотически активных веществ (см. Осмотическое давление, Осморегуляция). Направление движения воды зависит от осмотического градиента (см.) и определяется состоянием цитоплазматической мембраны. На распределение воды между клеткой и межклеточной жидкостью оказывает влияние не общее осмотическое давление внеклеточной жидкости, а ее эффективное осмотическое давление, к-рое определяется концентрацией в жидкости веществ, плохо проходящих через клеточную мембрану.

Осмотическое давление крови поддерживается на постоянном уровне — 7,6 атм. Поскольку осмотическое давление определяется концентрацией осмотически активных веществ (осмолярная концентрация), к-рую измеряют криометрическим методом (см. Криометрия), то осмолярную концентрацию выражают в мосм/л или дельта°; для сыворотки крови человека это ок. 300 мосм/л (или 0,553°). Осмолярная концентрация межклеточной, внутриклеточной и трансцеллюлярной жидкостей обычно такая же, как и плазмы крови; выделения ряда желез (напр., пот, слюна) гипотоничны. Моча млекопитающих и птиц, секрет солевых желез птиц и рептилий гипертоничны относительно плазмы крови.

У человека и животных одной из важнейших констант является pH крови, поддерживаемый на уровне ок. 7,36. В крови имеется ряд буферных систем — бикарбонатная, фосфатная, белки плазмы, а также гемоглобин, — поддерживающих pH крови на постоянном уровне. Но в основном pH плазмы крови зависит от парциального давления углекислого газа и концентрации HCO3- (см. Кислотно-щелочное равновесие).

Отдельные органы и ткани животных и человека существенно различаются по содержанию воды и электролитов (табл. 1, 2).

Важнейшее значение для деятельности клеток всех органов и систем имеет поддержание ионной асимметрии между внутриклеточной и внеклеточной жидкостью. В крови и других внеклеточных жидкостях высока концентрация ионов натрия, хлора, бикарбоната; в клетках главными электролитами являются калий, магний, органические фосфаты (табл. 2).

Различия электролитного состава плазмы крови и межклеточной жидкости обусловлены низкой проницаемостью для белков капиллярной стенки. В соответствии с правилом Доннана (см. Мембранное равновесие) внутри сосуда, где находится белок, концентрация катионов выше, чем в межклеточной жидкости, где относительно выше концентрация анионов, способных к диффузии. Для ионов натрия и калия фактор Доннана составляет 0,95, для одновалентных анионов 1,05.

В различных физиол, процессах часто большее значение имеет не общее содержание, а концентрация ионизированного кальция, магния и др. Так, в сыворотке крови общая концентрация кальция составляет 2,477+-0,286 ммоль/л, а ионов кальция 1,136+-0,126 ммоль/л. Стабильная концентрация электролитов в крови обеспечивается регуляторными системами (см. ниже).

Биол, жидкости, выделяемые различными железами, отличаются по ионному составу от плазмы крови. Молоко изоосмотично по отношению к крови, но в нем ниже, чем в плазме, концентрация натрия и выше содержание кальция, калия, фосфатов. Пот имеет меньшую концентрацию ионов натрия, чем плазма крови; желчь весьма близка к плазме крови по содержанию ряда ионов (табл. 3).

Для измерения объема отдельных жидкостных фаз тела используют метод разведения, основанный на том, что в кровь вводится вещество, свободно распределяющееся только в одной или в нескольких жидкостных фазах. Определяют объем жидкостной фазы V по формуле:

V = (Qa - Ea)/Ca, где Qa — точное количество вещества а, вводимого в кровь; Са — концентрация вещества в крови после полного уравновешивания; Еa — концентрация вещества в крови после выделения его почками.

Объем плазмы крови измеряют с помощью краски синий Эванса, Т-1824 или альбумина-1311, остающихся на протяжении опыта в пределах сосудистой стенки. Для измерения объема внеклеточной жидкости используют вещества, практически не проникающие в клетки: инулин, сахарозу, маннит, тиоцианат, тиосульфат. Общее количество воды в организме определяют по распределению «тяжелой воды» (D2O), трития или антипирина, которые легко диффундируют через клеточные мембраны. Объем внутриклеточной жидкости недоступен для прямого измерения и вычисляется по разности объемов общей воды тела и внеклеточной жидкости. Количество интерстициальной жидкости соответствует разности между объемами внеклеточной жидкости и плазмы крови.

Объем внеклеточной жидкости в ткани или срезе органа определяют с помощью перечисленных выше тест-веществ. Для этого вещество вводят в организм или добавляют в инкубационную среду. После его равномерного распределения в жидкостной фазе вырезают кусочек ткани и измеряют концентрацию тест-вещества в исследуемой ткани и в среде инкубации или плазме крови. Содержание внеклеточной жидкости в среде рассчитывают по отношению концентрации вещества в ткани к его концентрации в среде.

Механизмы водно-солевого гомеостаза у разных животных развиты неодинаково. У животных, имеющих внеклеточную жидкость, существуют системы ионной регуляции и объема жидкости тела. У низших форм пойкилоосмотических животных регулируется лишь концентрация ионов калия, а у гомойосмотических развиты также механизмы осморегуляции (см.) и регуляции концентрации в крови каждого из ионов. Водносолевой гомеостаз является необходимой предпосылкой и следствием нормального функционирования различных органов и систем.

Физиологические механизмы регуляции

В организме человека и животных различают: свободную воду вне- и внутриклеточных жидкостей, являющуюся растворителем минеральных и органических веществ; связанную воду, удерживаемую гидрофильными коллоидами в виде воды набухания; конституционную (внутримолекулярную), входящую в состав молекул белков, жиров и углеводов и освобождающуюся при их окислении. В разных тканях соотношение конституционной, свободной и связанной воды неодинаково. В процессе эволюции выработались весьма совершенные физиол, механизмы регуляции В.-с. о., обеспечивающие постоянство объемов жидкостей внутренней среды организма (см.), их осмотических и ионных показателей как наиболее стойких констант гомеостаза (см.).

В обмене воды между кровью капилляров и тканями существенное значение имеет та доля осмотического давления крови (онкотическое давление), к-рая обусловлена белками плазмы. Эта доля невелика и составляет 0,03—0,04 атм от общего осмотического давления крови (7,6 атм). Однако онкотическое давление вследствие высокой гидрофильности белков (особенно альбуминов) способствует удержанию воды в крови и играет большую роль в лимфо- и мочеобразовании, а также в перераспределении ионов между различными водными пространствами организма. Понижение онкотического давления крови может приводить к возникновению отека (см.).

Существуют две функционально связанные системы, регулирующие водно-солевой гомеостаз,— антидиуретическая и антинатрийуретическая. Первая направлена на сохранение в организме воды, вторая обеспечивает постоянство содержания натрия. Эфферентным звеном каждой из этих систем являются главным образом почки, афферентная же часть включает в себя осморецепторы (см.) и волюморецепторы сосудистой системы, воспринимающие объем циркулирующей жидкости (см. Рецепторы). Осморецепторы гипоталамической области мозга тесно связаны с нейросекреторными супраоптическим и паравентрикулярным ядрами, регулирующими синтез антидиуретического гормона (см. Вазопрессин). При повышении осмотического давления крови (из-за потери воды или избыточного поступления соли) происходит возбуждение осморецепторов, повышается выход антидиуретического гормона, усиливается реабсорбция воды почечными канальцами и снижается диурез. Одновременно возбуждаются нервные механизмы, обусловливающие возникновение ощущения жажды (см.). При избыточном поступлении в организм воды образование и выделение антидиуретического гормона резко снижается, что приводит к уменьшению обратного всасывания воды в почках (диурез разведения, или водный диурез).

Регуляция выделения и реабсорбции воды и натрия в значительной мере зависит также от общего объема циркулирующей крови и степени возбуждения волюморецепторов, существование которых доказано для левого и правого предсердий, для устья легочных вен и некоторых артериальных стволов. Импульсы от волюморецепторов левого предсердия поступают в ядра гипоталамуса и влияют на секрецию антидиуретического гормона. Импульсы от волюморецепторов правого предсердия поступают в центры, регулирующие выделение надпочечниками альдостерона (см.) и, следовательно, натрийурез. Эти центры расположены в задней части гипоталамуса, передней части среднего мозга и связаны с эпифизом. Последний выделяет адреногломерулотропин, который стимулирует секрецию альдостерона. Альдостерон, повышая реабсорбцию натрия, способствует задержке его в организме; одновременно он снижает реабсорбцию калия и тем самым увеличивает его выделение из организма.

Важнейшее значение в регуляции В.-с. о. имеют внепочечные механизмы, включающие в себя органы пищеварения и дыхания, печень, селезенку, кожу, а также различные отделы ц. н. с. и эндокринные железы.

Внимание исследователей привлекает проблема так наз. солевого выбора: при недостаточном поступлении в организм тех или иных элементов животные начинают предпочитать пищу, содержащую эти недостающие элементы, и, наоборот, при избыточном поступлении в организм определенного элемента отмечается понижение аппетита к пище, содержащей его. По-видимому, в этих случаях важную роль играют специфические рецепторы внутренних органов.

Патологическая физиология

Нарушение обмена воды и электролитов выражается в избытке или дефиците внутриклеточной и внеклеточной воды, всегда сопряженными с изменением содержания электролитов. Увеличение общего количества воды в организме, когда ее поступление и образование больше, чем выделение, называют положительным водным балансом (гипергидратацией, гипергидрией). Уменьшение общих запасов воды, когда ее потери превышают поступление и образование, называют отрицательным водным балансом (гипогидратацией, гипогидрией, эксикозом) или обезвоживанием организма (см.). Аналогично различают положительный и отрицательный солевой баланс. Нарушение водного баланса приводит к нарушению обмена электролитов и, наоборот, при нарушениях баланса электролитов меняется баланс воды. Нарушение В.-с. о., помимо изменения общего количества воды и солей в организме, может проявляться также патологическим перераспределением воды и основных электролитов между плазмой крови, интерстициальным и внутриклеточным пространствами.

При нарушении В.-с. о. в первую очередь изменяется объем и осмотическая концентрация внеклеточной воды, особенно ее интерстициального сектора. Изменение водно-солевого состава плазмы крови далеко не всегда адекватно отражает изменения, происходящие во внеклеточном пространстве и тем более во всем организме. Более точное суждение о характере и количественной стороне сдвигов В.-с. о. можно составить путем определения количества общей воды, внеклеточной воды и воды плазмы, а также общего обменоспособного натрия и калия.

Единой классификации нарушений В.-с. о. пока не существует. Описано несколько форм его патологии.

Дефицит воды и электролитов — один из самых частых видов нарушения В.-с. о. Возникает при потере организмом жидкостей, содержащих электролиты: мочи (сахарный и несахарный диабет, заболевания почек, сопровождающиеся полиурией, длительное применение натрийуретических мочегонных средств, недостаточность коры надпочечников); кишечного и желудочного сока (понос, кишечные и желудочные свищи, неукротимая рвота); транссудата, экссудата (ожоги, воспаления серозных оболочек и др.). Отрицательный водно-солевой баланс устанавливается также при полном водном голодании. Подобные нарушения бывают при гиперсекреции паратгормона (см.) и гипервитаминозе D. Вызываемая ими гиперкальциемия (см.) ведет к потере воды и электролитов вследствие полиурии и рвоты. При гипогидриях в первую очередь теряются внеклеточная вода и натрий. Более тяжелая степень обезвоживания сопровождается потерей внутриклеточной воды, а также ионов калия.

Значительный дефицит электролитов — обессоливание организма— возникает в тех случаях, когда потерю биологических жидкостей, содержащих электролиты, пытаются возмещать пресной водой или раствором глюкозы. При этом осмотическая концентрация внеклеточной жидкости падает, вода частично перемещается в клетки и происходит чрезмерная их гидратация (см.).

Признаки тяжелого обезвоживания организма возникают у взрослых после потери примерно 1/3, а у детей 1/5 объема внеклеточной воды. Наибольшую опасность представляет коллапс вследствие гиповолемии и обезвоживания крови с повышением ее вязкости (см. Ангидремия). При неправильном лечении (напр., бессолевой жидкостью) развитию коллапса способствует также снижение концентрации натрия в крови — гипонатриемия (см.). Значительная артериальная гипотензия может нарушать фильтрацию в почечных клубочках, вызывая олигурию, гиперазотемиго и ацидоз. Когда преобладает потеря воды, возникает внеклеточная гиперосмия и обезвоживание клеток. Характерные клинические признаки этого состояния — мучительная жажда, сухость слизистых оболочек, потеря эластичности кожи (складка кожи длительно не разглаживается), заострение черт лица. Обезвоживание мозговых клеток проявляется повышением температуры тела, нарушением ритма дыхания, помрачением сознания, галлюцинациями. Падает вес тела. Гематокритный показатель повышен. Возрастает концентрация натрия в плазме крови (гипернатриемия). При сильном обезвоживании возникает гиперкалиемия (см.).

В случаях злоупотребления бессолевой жидкостью и избыточного оводнения клеток ощущения жажды, несмотря на отрицательный баланс воды, не возникает; слизистые оболочки влажны; прием пресной воды вызывает тошноту. Оводнение клеток головного мозга сопровождается сильной головной болью, судорогами мышц. Дефицит воды и солей в этих случаях возмещают путем длительного введения жидкости, содержащей основные электролиты, с учетом величины их потери и под контролем показателей В.-с. о. При угрозе коллапса требуется срочное восстановление объема крови. В случае недостаточности коры надпочечников необходима заместительная терапия гормонами коры надпочечников.

Дефицит воды с относительно небольшой потерей электролитов возникает при перегревании организма (см.) или при тяжелой физ. работе за счет усиленного потоотделения (см.). Преимущественная потеря воды происходит также после приема осмотических мочегонных средств (см.). Вода, не содержащая электролитов, теряется в избытке при длительной гипервентиляции легких.

Относительный избыток электролитов наблюдается в период водного голодания — при недостаточном обеспечении водой ослабленных больных, находящихся в бессознательном состоянии и получающих принудительное питание, при нарушении глотания, а также у грудных детей при недостаточном потреблении ими молока и воды.

Абсолютный избыток электролитов, в частности натрия (гипернатриемия), создается у больных при изолированном дефиците воды, если его ошибочно возмещают введением изотонического или гипертонического раствора хлористого натрия. Особенно легко гиперосмотическое обезвоживание возникает у грудных детей, у которых концентрационная способность почек развита недостаточно и легко наступает задержка солей.

Относительный или абсолютный избыток электролитов при уменьшении общего объема воды в организме приводит к увеличению осмотической концентрации внеклеточной жидкости и к обезвоживанию клеток. Уменьшение объема внеклеточной жидкости стимулирует секрецию альдостерона, понижающего выделение натрия с мочой, потом, через кишечник и т. д. Этим самым создается гиперосмолярность жидкостей экстрацеллюлярного пространства и возбуждается образование вазопрессина, который ограничивает выведение воды почками. Гиперосмолярность внеклеточной жидкости снижает потерю воды и внепочечными путями.

Дефицит воды при относительном или абсолютном избытке электролитов клинически проявляется олигурией, потерей веса, признаками обезвоживания клеток, в т. ч. нервных. Повышается гематокритный показатель, возрастает концентрация натрия в плазме и в моче. Восстановление количества воды и изотоничности жидкостей организма достигается внутривенным введением изотонического раствора глюкозы или питьем воды. Потерю воды и натрия при избыточном потоотделении возмещают питьем подсоленной (0,5%) воды.

Избыток воды и электролитов — частая форма нарушения В.-с. о., проявляющаяся преимущественно в виде отеков и водянки различного происхождения (см. Отек). Основными причинами возникновения положительного водно-электролитного баланса служат нарушение выделительной функции почек (гломерулонефриты и др.). вторичный гиперальдостеронизм (при сердечной недостаточности, нефротическом синдроме, циррозе печени, голодании, иногда в послеоперационном периоде), гипопротеинемия (при нефротическом синдроме, циррозе печени, голодании), повышение проницаемости большей части гистогематического барьера (при ожоге, шоке и др.). Гипопротеинемия и повышение проницаемости сосудистых стенок способствуют перемещению жидкости из внутрисосудистого в интерстициальный сектор и развитию гиповолемии. Положительный водно-электролитный баланс чаще сопровождается накоплением во внеклеточном пространстве изоосмотической жидкости. Однако при сердечной недостаточности избыток натрия может превосходить избыток воды, несмотря на отсутствие гипернатриемии. Для восстановления нарушенного баланса ограничивают потребление натрия, используют натрийуретические мочегонные средства и нормализуют онкотическое давление крови.

Избыток воды с относительным дефицитом электролитов (водное отравление, гипоосмолярная гипергидрия) возникает в тех случаях, когда в организм вводится большое количество пресной воды или раствора глюкозы при недостаточном выделении жидкости (олигурия на почве недостаточности надпочечников, патология почек, леч. применение вазопрессина или его гиперсекреция после травмы, операции). Избыток воды может поступать во внутреннюю среду при использовании для гемодиализа гипоосмотической жидкости. Опасность водной интоксикации у грудных детей возникает в связи с введением избытка пресной воды в процессе лечения токсикоза. При водном отравлении нарастает объем внеклеточной жидкости. В крови и плазме возрастает содержание воды (см. Гидремия), возникает гипонатриемия (см.) и гипокалиемия (см.), снижается гематокритный показатель. Гипоосмолярность крови и интерстициальной жидкости сопровождается оводнением клеток. Нарастает вес тела. Характерно появление тошноты, усиливающейся после питья пресной воды, и рвоты, не приносящей облегчения. Слизистые оболочки влажны. Об оводнении мозговых клеток свидетельствуют апатия, сонливость, головная боль, подергивание мышц, судороги. Осмолярная концентрация мочи низкая, часто отмечается олигурия. В тяжелых случаях развиваются отек легких асцит, гидроторакс. Острые проявления водной интоксикации устраняют путем повышения осмотической концентрации внеклеточной жидкости внутривенным введением гипертонического солевого раствора. Потребление воды сильно ограничивают или прекращают до того, пока из организма не будет удален ее избыток.

Нарушение В.-с. о. играет большую роль в патогенезе острой лучевой болезни (см.). Под влиянием ионизирующей радиации уменьшается содержание ионов натрия и калия в ядрах клеток вилочковой железы и селезенки, нарушается транспорт катионов в клетках стенки кишечника, селезенки, вилочковой железы и других органов. Характерной реакцией организма на воздействие радиации в больших дозах (700 р и более) является перемещение воды, ионов натрия и хлора из тканей в просвет желудка и кишечника.

При острой лучевой болезни наблюдается значительное повышение экскреции калия с мочой, связанное с усиленным распадом радиочувствительных тканей.

Потеря натрия и обезвоживание — одна из возможных причин смерти в случаях, когда исход заболевания определяется развитием жел.-киш. синдрома. В основе его лежит утечка жидкости и электролитов в просвет кишечника, лишенного в результате действия ионизирующей радиации , значительной части своего эпителиального покрова. Одновременно резко ослабляется всасывающая функция жел.-киш. тракта, что сопровождается развитием тяжелой диареи.

Опыты показали, что возмещение воды и электролитов, направленное на нормализацию водно-солевого баланса у облученных животных, значительно увеличивает продолжительность их жизни.

Радиоизотопное исследование

Измерение объема жидкостных фаз при помощи радиоактивных препаратов основано на методе их разведения по всему водному сектору организма (вводят окись трития) или же по внеклеточному пространству (с помощью радиоактивного изотопа брома 82Br). Для определения объема общей воды окись трития вводится внутривенно или внутрь. Через 0,5; 1; 2; 4 и 6 час. после введения окиси трития собирают пробы мочи, крови и др. Максимально допустимое количество окиси трития, вводимое в диагностических целях, составляет 150 мккюри. Через 14—15 дней исследование можно повторить, вводя препарат в том же количестве. Специальной подготовки больного не требуется.

Измерение радиоактивности производят с помощью жидкостно-сцинтилляционных радиометров типа УСС-1, СБС-1 и др. (см. Радиоизотопные диагностические приборы). Для сравнения применяют стандартный раствор. Общее количество воды вычисляют по формуле: V = (V1-A1)/(A2-A0), где V — общее количество воды в организме (в л); А1 — активность введенного изотопа (в имп/мин/л); А2 — активность исследуемого образца (в имп/мин/л); А0 — активность контрольной пробы (в имп/мин/л); V1 — объем введенного индикатора (в л). У здоровых мужчин содержание общей воды, измеряемое данным методом, составляет 56—66%, у здоровых женщин 48—58% от веса тела.

Для определения объема внеклеточной жидкости применяют 82Br. Бром частично накапливается в желудке, слюнных железах, щитовидной железе, надпочечниках, желчи. Для блокады щитовидной железы назначается раствор Люголя или перхлорат калия. Внутривенно вводят 20—40 мккюри бромида натрия. Через 24 часа собирают мочу, в к-рой определяют количество выделенного 82Br, а также из вены берут 10—15 мл крови и определяют радиоактивность плазмы. Радиоактивность проб крови и мочи измеряется в колодезном сцинтилляционной счетчике. «Бромидное (внеклеточное) пространство» вычисляют по формуле разведения:

Vbr = (A1-A2)/R,

где Vbr — «бромидное пространство» (в л); А1 — количество введенного внутривенно изотопа (имп/мин); А2— количество выделенного 82Br с мочой (в имп/мин); R — радиоактивность плазмы (в имп/мин/л). Поскольку бром неравномерно распределяется между плазмой и эритроцитами, а часть брома поглощается эритроцитами, для определения объема внеклеточной жидкости (V) вносится поправка (F=0,86 Vbr). У здоровых лиц объем внеклеточной жидкости составляет 21—23% веса тела. У больных с отеками он повышается до 25—30% и более.

Определение общего обменоспособного натрия (OONa) и калия (OOK) основано на принципе разведения. OONa определяют по 24Na или 22Na, вводимым внутривенно или внутрь в количестве 100—150 и 40—50 мккюри соответственно. Собирают суточную мочу, а через 24 часа берут кровь из вены и отделяют плазму. В плазме определяют радиоактивность 22Na или 24Na и концентрацию стабильного натрия на пламенном фотометре (см. Фотометрия). Объем жидкости, содержащей радиоактивный натрий («натриевое пространство»), вычисляют по формуле:

Vna = (A1-A2)/W,

где Vna— «натриевое пространство» (в л); А1 — количество введенного 22Na или 24Na (в имп/мин); A2 — количество выведенного с мочой изотопа (в имп/мин/л); W — концентрация изотопа в плазме (в имп/мин/л). Содержание OONa определяют по формуле: P = Vna×P1, где Р1 — концентрация стабильного натрия (в мг-экв/л). Величины «калиевого пространства» и обменоспособного калия по 42K и 43K вычисляют по тем же формулам, что и для натрия. Количество OONa у здоровых лиц составляет 36—44 мг-экв/кг. При отечном синдроме оно повышается до 50 мг-экв/кг и более. Уровень OOK у здоровых лиц колеблется от 35 до 45 мг-экв/кг в зависимости от возраста и пола. У больных с отеками он падает от 30 мг-экв/кг и ниже.

Содержание общего калия в организме наиболее точно определяют в низкофоновой камере с высокочувствительными детекторами по естественному изотопу 40K, содержание к-рого составляет 0,0119% всего калия в организме. Проверку результатов осуществляют на фантоме из полиэтилена, имитирующем так наз. стандартного человека и заполненном водой с определенным количеством калия (140—160 г).

Особенности водно-солевого обмена у детей

Рост ребенка сопровождается относительным уменьшением общего содержания воды в организме, а также изменением в распределении жидкости между внеклеточным и внутриклеточным секторами (табл.4).

Ранний детский возраст характеризуется высокой напряженностью и неустойчивостью В.-с. о., что определяется интенсивным ростом ребенка и относительной незрелостью нейро-эндокринной и почечной систем регуляции. Суточная потребность в воде ребенка первого года жизни составляет 100—165 мл/кг, что в 2—3 раза превышает потребность взрослых. Минимальная потребность в электролитах детей первого года жизни составляет: натрий 3,5—5,0; калий — 7,0—10,0; хлор — 6,0—8,0; кальций — 4,0—6,0; фосфор — 2,5—3,0 мг-экв/день. При естественном вскармливании необходимые количества воды и солей ребенок первого полугодия жизни получает с молоком матери, однако растущая потребность в солях определяет необходимость введения прикорма уже на 4—5 мес. При искусственном вскармливании, когда ребенок в избытке получает соли и азотистые вещества, вода, требующаяся для их выведения, должна включаться в рацион дополнительно.

Отличительной особенностью В.-с.о. в раннем детском возрасте является относительно большее, чем у взрослых, выделение воды через легкие и кожу. Оно может достигать половины и более принятой воды (при перегревании, одышке и т.п.). Потери воды при дыхании и за счет испарения с поверхности кожи составляют 1,3 г/кг в час (у взрослых — 0,5 г/кг в час). Это объясняется относительно большей величиной поверхности тела, приходящейся у детей на единицу веса, а также функциональной незрелостью почек. Почечная экскреция воды и солей у детей раннего возраста ограничена низкой величиной гломерулярной фильтрации, составляющей у новорожденных 1/3 — 1/4 почечной экскреции взрослого.

Суточный диурез в возрасте 1 мес. составляет 100—350, у детей 6 мес.— 250—500, к году — 300—600, в 10 лет — 1000—1300 мл. При этом относительная величина суточного диуреза в расчете на стандартную поверхность тела на первом году жизни (1,72 м2) в 2—3 раза больше, чем у взрослых. Процессы концентрации мочи и удельный вес ее у детей раннего возраста колеблется в узких пределах — почти всегда ниже 1010. Эта особенность нек-рыми авторами определяется как физиологический несахарный диабет. Причины этого состояния — в недостаточности процессов нейросекреции и недоразвитии противоточно-обменного механизма петли Генле. В то же время у детей раннего возраста в расчете на 1 кг веса выводится относительно больше альдостерона, чем у взрослых. Экскреция альдостерона у новорожденных на протяжении первого месяца жизни постепенно повышается от 0,07 до 0,31 мкг/кг и остается на этом уровне до возраста 1 года, снижаясь к трем годам до 0,13 мкг/кг, а в возрасте 7 —15 лет составляет в среднем 0,1 мкг/кг в сутки (М.Н. Хованская и соавт., 1970). Миник и Конн (М. Minick, J. W. Сопи, 1964) установили, что почечная экскреция альдостерона у новорожденных в расчете на 1 кг веса в 3 раза выше, чем у взрослых. Предполагается, что относительный гиперальдостеронизм детей раннего возраста может быть одним из факторов, обусловливающих особенности распределения жидкости между внутри- и внеклеточным пространствами.

Ионный состав внеклеточной жидкости и плазмы крови в процессе роста не подвержен существенным изменениям. Исключение составляет период новорожденности, когда несколько повышено содержание калия в плазме крови (до 5,8 мг-экв/литр) и наблюдается наклонность к метаболическому ацидозу. Моча у новорожденных и детей грудного возраста может быть почти полностью лишена электролитов. По данным Пратта (E. L. Pratt, 1957), минимальная экскреция натрия с мочой составляет в эти возрастные периоды 0,2 мг-экв/кг, калия — 0,4 мг-экв/кг. У маленьких детей выведение калия с мочой обычно превышает экскрецию натрия. Величины почечной экскреции натрия и калия уравниваются (ок. 3 мг-экв/кг) примерно к 5 годам. Позже экскреция натрия превышает выведение калия: 2,3 и 1,8 мг-экв/кг соответственно [Шапталь (J. Chaptal) и сотр., 1963].

Несовершенство регуляции В.-с.о. у детей раннего возраста служит причиной значительных колебаний осмотического давления внеклеточной жидкости. При этом на ограничение воды или избыточное введение солей дети реагируют солевой лихорадкой. Незрелость механизмов волюморегуляции в этом возрастном периоде обусловливает гидролабильность — неустойчивость В.-с. о. со склонностью к развитию симптомокомплекса дегидратации (эксикоза). Наиболее тяжелые расстройства В.-с. о. наблюдаются при жел.-киш. заболеваниях, нейротоксическом синдроме, при патологии надпочечников (см. Адрено-генитальный синдром, у новорожденных, Гипоальдостеронизм, Токсический синдром и др.); у детей старшего возраста патология В.-с. о. особенно ярко выражена при нефропатиях, ревматизме с недостаточностью кровообращения (см. Гломерулонефрит, Нефротический синдром, Ревматизм, Ревмокардит и др.).

Изменения водно-солевого обмена в процессе старения организма

Старение организма сопровождается существенными изменениями В.-с. о., в частности происходит уменьшение содержания воды в тканях (миокарде, скелетной мышце, печени, почках) за счет внутриклеточной фракции, уменьшение концентрации калия и увеличение натрия в клетках, перераспределение кальция и фосфора между тканями (трансминерализация тканей). Изменение фосфорно-кальциевого обмена нередко сопровождается системным поражением костной ткани и развитием остеопороза (см.).

В пожилом и старческом возрасте уменьшается диурез и выведение электролитов с мочой. Величина pH крови, а также другие показатели, характеризующие кислотно-щелочное равновесие организма (напряжение углекислоты, бикарбонат стандартный и истинный и т. д.), существенных возрастных изменений не претерпевают. Возрастные изменения механизмов регуляции обмена воды и электролитов в значительной мере ограничивают их компенсаторно-приспособительные возможности, что особенно отчетливо проявляется при ряде заболеваний и в условиях функциональных нагрузок (см. Старость, старение).

См. также Минеральный обмен.


Таблица 1. СОДЕРЖАНИЕ ВОДЫ В РАЗЛИЧНЫХ ОРГАНАХ И ТКАНЯХ ВЗРОСЛОГО ЧЕЛОВЕКА К ВЕСУ ТКАНИ [по Питтсу (R. F. Pitts), 1968]

Ткань или орган

Содержание воды, %

Ткань или орган

Содержание воды,

%

Жировая

ткань

10,0

Мышца

75,6

Селезенка

75,8

Скелет

22,0

Печень

68,3

Легкие

79,0

Кожа

72,0

Сердце

79,2

Кишечник

74,5

Почки

82,7

Мозг

74,8

Кровь

83,0


Таблица 2. СОДЕРЖАНИЕ ЭЛЕКТРОЛИТОВ В КЛЕТКАХ И ВНЕКЛЕТОЧНОЙ ЖИДКОСТИ ВЗРОСЛОГО ЧЕЛОВЕКА (по Питтсу, 1968)

Ионы

Электролиты внеклеточных жидкостей

Внутриклеточные электролиты (мышца)

(в мг-экв/л)

Na+

144

10

К +

4

160

Ca+2

2,5

Mg + 2

1,0

35

Cl-

144

2

HCO3 -

30

8

PO4 -3

2,0

140 (органические)

SO4 -2

1

-



Таблица 3. КОНЦЕНТРАЦИЯ ИОНОВ В ЖИДКОСТЯХ ОРГАНИЗМА ЧЕЛОВЕКА

Исследуемые жидкости

Концентрация ионов, в мг-экв/л

Na+

К +

Са+2

Mg + 2

Cl-

SO4 -2

PO4 -3

HCO3 -

Желчь

145

5,2

_

_

100

_

Женское молоко

14

16

17

3

и

6

Плазма крови

142-150

4,5—5

5

1,1

103

1

2

27

Пот

75 (18-97)

5

5

75

Секрет поджелудочной железы

148

7

3

0,3

80

8,4

80

Цереброспинальная жидкость

142

3

2,5

2

124

21


Таблица 4. СОДЕРЖАНИЕ И РАСПРЕДЕЛЕНИЕ ВОДЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА В ЗАВИСИМОСТИ ОТ ВОЗРАСТА (в % к весу тела) [по Полоновскому, Колену (С. Polonovski, J. Colin), 1963]

Секторы воды организма

Возраст

до 6 мес.

6 мес.— 1 год

1 год— 5 лет

старше 5 лет и взрослые

Общее содержание воды в том числе:

70

70

65-70

60—65

Внутриклеточная жидкость

30

35

35-40

40—45

Внеклеточная жидкость:

40

35

30

20-24

а) интерстициальная жидкость

34,5

30

25

17

б) плазма

5,6

5

5

5

Библиография: Боголюбов В. М. Патогенез и клиника водно-электролитных расстройств, Л., 1968, библиогр.; Бонд В., Флиднер Т. и Аршамбо Д. Радиационная гибель млекопитающих, пер. с англ., с. 237, М., 1971; Б у л б у к а И. и др. Методы исследования гидроэлектролитического равновесия, пер. с румын., Бухарест, 1962; Г и н e ц и н-с к и й А. Г. Физиологические механизмы водно-солевого равновесия, М.—Л., 1964; Капланский С. Я. Минеральный обмен, М.—Л., 1938; К e p п e л ь-Фрониус Э. Патология и клиника водно-солевого обмена, пер. с венгер., Будапешт, 1964; Кравчинский Б. Д. Физиология водно-солевого обмена, JI., 1963, библиогр.; Крохалев А. А. Водный и электролитный обмен (острые расстройства), М., 1972, библиогр.; Кузин А. М. Радиационная биохимия, с. 253, М., 1962; К у н о Я. Перспирация у человека, пер. с англ., М., 1961; К у п-раш Л. П. и Костюченко В. Г. К вопросу о возрастных особенностях водно-электролитного обмена, в кн.: Герон-тол. и гериатр., Ежегодник 1970—1971 гг., под ред. Д. Ф. Чеботарева, с. 393, Киев, 1971; Лазарис Я. А. и Сереб-ровская И. А. Патология водно-электролитного обмена, Многотомн, руководство по пат. физиол., под ред. H. Н. Сиротинина, т. 2, с. 398, М., 1966, библиогр.; Основы геронтологии, под ред. Д. Ф. Чеботарева и др., с. 92, М., 1969; Пронина H. Н. и С у л а к в е-лид зе Т. С. Гормоны в регуляции водно-солевого обмена, Антидиуретический гормон, Л., 1969, библиогр.; С а т-и а e в а X. К. Внепочечные механизмы осморегуляции. Алма-Ата, 19 71, библиогр.; Семенов Н. В. Биохимические компоненты и константы жидких сред и тканей человека, М., 1971; Уилкинсон А. У. Водно-электролитный обмен в хирургии, пер. с англ., М., 1974, библиогр.; Физиология почки, под ред. Ю. В. Наточина, Л., 1972; Физиология человека в пустыне, под ред. Э. Адольфа, пер. с англ., M.,1952;Baur Н. Wasser-und Elektrolyt-Haushalt, Handb, prakt. Geriatr., hrsg. v. W. Doberauer, S. 240, Stuttgart, 1965; Bentley P. J. Endocrines and osmoregulation, B., 1971; Clinical disorders of fluid and electrolyte metabolism, ed. by М. H. Maxwell a. G. R. Kleeman, N. Y., 1972; К о t y k А. а. J ana сек К. Cell membrane transport, N. Y., 1970; P i t t s R. F. Physiology of the kidney and body fluids, Chicago, 1968; W e i s b e r g H. F. Water, electrolyte and acid-base balance, Baltimore,1962.

Особенности В.-с. о. у детей — Вeльтищев Ю. Е. Водно-солевой обмен ребенка, М., 1967, библиогр.; Хованская М.Н. и др. Минералокортико-идная функция коры надпочечников и ее суточный ритм у детей в норме и при патологии, в кн.: Вопр, физиол, и патол, обмена веществ в дет. возрасте, под ред. 10. Е. Вельтищева и др., с. 111, М., 1970; С h a p t а 1 J. е. a. Etude statistique de 1’elimination urinaire des electrolytes chez l’enfant normal h differents ages, Arch. fran<?. Pediat., t, 20, p. 905, 1963; Me Cance R. A. a. Widdowson E. M. New thoughts on renal function in the early days of life, Brit. med. Bull., v. 13, p. 3. 1957; Minick М. C. a. Conn J. W. Aldosterone excretion from infancy to adult life, Metabolism, v. 13, p. 681, 1964; Polonovski C. et Colin J. Explorations biologiques en pediatrie, P., 1963.




Популярные статьи

Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание

Поделиться: