АСКОРБИНОВАЯ КИСЛОТА

АСКОРБИНОВАЯ КИСЛОТА (Acidum ascorbinicum; синоним витамин C) — органическое соединение, относящееся к витаминам и содержащееся в большинстве растений. Отсутствие его в пище вызывает развитие специфического заболевания — цинги (см.), а недостаточность приводит к развитию гиповитаминоза.

В 1923—1927 годы Зильва (S. S. Zilva) впервые выделил из лимонного сока вещество с сильным антискорбутным свойством. Он же установил основные свойства этого вещества. В 1930—1933 годы Тилльманс (J. Tillmans) показал обратимое окисление этого вещества. В 1928—1933 годы Сент-Дьёрдьи (А. Szent-Györgyi) выделил в кристаллическом виде из надпочечников быка, а также из капусты и паприки вещество, названное им «гексуроновой кислотой», получившей затем название «аскорбиновая кислота». Оно оказалось идентичным с антискорбутным веществом Зильвы.

Аскорбиновая кислота является производным L-гулоновой кислоты (2-3-эндиол-L-гулоно-1,4-лактон). Наиболее активной формой является L-аскорбиновая кислота. Эмпирическая формула C6H8O6, структурная формула:

Молекулярный вес аскорбиновой кислоты —176,1. Удельное вращение в воде —[а]20D + 23°; t°пл 192°. Это одноосновная кислота с константой диссоциации рКа —4,25 в воде. В сильно кислой среде аскорбиновая кислота обладает максимумом поглощения при 245 нм, сдвигающимся к 365 нм в нейтральной среде и к 300 нм в щелочной. В чистом виде аскорбиновая кислота представляет собой белые кристаллы кислого вкуса, стойкие в сухом виде и быстро разрушающиеся в водных растворах.

Таблица. СОДЕРЖАНИЕ АСКОРБИНОВОЙ КИСЛОТЫ В НЕКОТОРЫХ ПИЩЕВЫХ ПРОДУКТАХ (в мг на 100 г)

1 г аскорбиновой кислоты растворяется в 5 мл воды, 25 мл этилового спирта или 100 мл глицерина. Аскорбиновая кислота нерастворима в бензоле, хлороформе, эфире, петролейном эфире и жирах. Аскорбиновая кислота реагирует с катионами металлов, образуя аскорбинаты с общей формулой C6H7O6M. Аскорбиновая кислота легко окисляется кислородом воздуха. Окисление аскорбиновой кислоты ускоряется в нейтральных и щелочных растворах. Оно катализируется светом, ионами меди, железа, серебра и ферментами растений: аскорбиноксидазой и полифенолоксидазой. При окислении аскорбиновая кислота переходит в дегидроаскорбиновую кислоту, обладающую столь же высоким С-витаминным действием, что и аскорбиновая кислота. Дегидроаскорбиновая кислота быстро восстанавливается в тканях. Она не содержит конъюгированной системы и не обнаруживает поглощения в ультрафиолете. Наряду с аскорбиновой кислотой и дегидроаскорбиновой кислотой в растительных продуктах встречается связанная с белком форма Аскорбиновая кислота — аскорбиген,— устойчивая к окислению. При необратимом окислении дегидроаскорбиновая кислота после раскрытия лактонового кольца при pH более 4 переходит в 2,3-дикетогулоновую кислоту, а затем в щавелевую и омгреоновую кислоту. Окисление аскорбиновой кислоты задерживается тиосульфатом, тиомочевиной, тиоацетатами, флавоноидами, о-дифенолами, метафосфорной кислотой, кислыми полисахаридами и др. Большинство белков и аминокислот также задерживает окисление аскорбиновой кислотой путем образования комплексов либо с самой аскорбиновой кислотой, либо с медью. Аскорбиновая кислота легко восстанавливает азотнокислое серебро, растворы брома, йода и 2,6-дихлорфенолин-дофенола. Аскорбиновая кислота настолько эффективна в качестве восстановителя, что нашла широкое применение в аналитической химии при определении ряда минеральных элементов и в полярографических исследованиях большого числа веществ, в частности урана и других соединений. Аскорбиновая кислота широко распространена в природе (см. таблицу). Она содержится в растениях, главным образом в восстановленной форме. Из органов животных богаты аскорбиновой кислотой надпочечники, гипофиз, хрусталик, печень. При кулинарной обработке теряется в среднем до 50% аскорбиновой кислоты. Еще больше теряется при стоянии готовых блюд. Ряд стабилизаторов, находящихся в белке яиц, мясе, печени, крупах, твороге, крахмале, поваренной соли, способствует сохранению аскорбиновой кислоты при приготовлении пищи. Длительному сохранению аскорбиновой кислоты способствуют: квашение, замораживание, дегидратация, баночное консервирование, варка ягод и фруктов с сахаром (см. также Витаминизация пищевых продуктов).

Аскорбиновую кислоту получают синтетически из D-глюкозы, восстанавливаемой в D-сорбит, который затем переводится с помощью бактериального синтеза в D-сорбозу, 2-оксо-L-гулоновую к-ту и L-аскорбиновую кислоту. Хорошим стабилизатором аскорбиновой кислоты является сульфит натрия, используемый при приготовлении ампульных растворов. Единственным антагонистом аскорбиновой кислоты является глюкоаскорбиновая кислота.

Все растения и многие животные синтезируют аскорбиновую кислоту, за исключением человека, обезьяны, морской свинки, индийской плодовой летучей мыши (Pteropus medius) и краснозадого бульбуля (Pycnonotus cafer Linn.) — птицы из отряда Passeriformes, вследствие отсутствия у них ферментов D-глюкуроноредуктазы и L-гулоно-гамма-лактон-O2-оксидоредуктазы, возможно, из-за врожденного генетического дефекта.

Поступившая в организм человека аскорбиновая кислота всасывается в тонком кишечнике. Общее количество аскорбиновой кислоты в организме здорового человека 3— 6 г. В плазме крови содержится 0,7—1,2 мг% , в лейкоцитах 20—30 мг% . Ряд оксидаз (аскорбиноксидаза, цитохромоксидаза, Пероксидаза, лак-таза и др.) прямо или косвенно катализирует окисление аскорбиновой кислоты. Синтез аскорбиновой кислоты в животном организме происходит из D-глюкуронолакто-на. Механизм действия аскорбиновой кислоты окончательно еще не расшифрован. Она играет важную роль в гидроксилировании пролина в оксипролин коллагена, участвует в окислении аминокислот ароматического ряда (тирозина и фенилаланина), а также в гидроксилировании триптофана в 5-окситриптофан в присутствии ионов меди. Аскорбиновая кислота участвует в биогенезе кортикостероидов, оказывает защитное действие на пантотеновую и никотиновую кислоты и способствует ферментативному превращению фолиевой кислоты в фолиновую. У видов, не синтезирующих аскорбиновую кислоту (человек, морская свинка), как и у способных к его биосинтезу, аскорбиновая кислота оказывает экономизирующее действие в отношении витаминов B1, B2, A, E, фолиевой кислоты, пантотеновой кислоты, уменьшая расходование, то есть снижает потребность в них. Этот эффект, по-видимому, связан с редуцирующими и антиоксидатными свойствами аскорбиновой кислоты.

Суточная потребность человека в аскорбиновой кислоте — см. Витамины.

Препараты аскорбиновой кислоты применяют для профилактики и лечения C-витаминной недостаточности, а также при повышенной физиологической потребности организма в аскорбиновой кислоте (во время беременности и лактации, при повышенной физической нагрузке, усиленном умственном и эмоциональном напряжении).

В лечебных целях аскорбиновую кислоту используют в комплексной терапии инфекционных заболеваний и разного вида интоксикаций, при заболеваниях печени, нефропатии беременных, при болезни Аддисона, при вяло заживающих ранах и переломах костей, при заболеваниях желудочно-кишечного тракта (ахилия, язвенная болезнь и др.), при атеросклерозе. Аскорбиновую кислоту назначают для профилактики кровотечений при лечении антикоагулянтами.

Назначают аскорбиновую кислоту внутрь (после еды), внутримышечно и внутривенно. Лечебные дозы для взрослых составляют при приеме внутрь 0,05—0,1 г 3— 5 раз в день; парентерально аскорбиновую кислоту вводят в виде 5% раствора от 1 до 5 мл. Детям назначают внутрь по 0,05—0,1 г 2—3 раза в день; парентерально 1—2 мл 5% раствора. Сроки лечения зависят от характера и течения заболевания.

При длительном применении высоких доз аскорбиновой кислоты следует следить за функцией поджелудочной железы, почек, а также за артериальным давлением, так как имеются отдельные наблюдения, свидетельствующие о том, что продолжительный прием значительных количеств аскорбиновой кислоты вызывает угнетение инсулярного аппарата поджелудочной железы, способствует развитию почечного диабета и может повышать артериальное давление.

Необходимо соблюдать осторожность при назначении максимальных доз аскорбиновой кислоты при внутривенном введении в случаях повышенной свертываемости крови, при тромбофлебитах и склонности к тромбозам.

Формы выпуска: порошок, драже по 0,05 г, таблетки по 0,025 г с глюкозой, таблетки по 0,05 г и по 0,1 г; ампулы, содержащие 1 и 5 мл 5% раствора. Кроме того, аскорбиновая кислота входит в состав различных поливитаминных препаратов.

Сохраняют в хорошо укупоренной таре, предохраняющей от действия света и воздуха.

См. также Шиповник.

Методы определения аскорбиновой кислоты зависят от объекта исследования, концентрации аскорбиновой кислоты в объекте, наличия в объекте веществ, мешающих определению, и пр. Объектами исследования могут быть органы и ткани животных, биологические жидкости (кровь, моча и др.), растительные продукты (овощи, фрукты и пр.), готовая пища, медицинские препараты аскорбиновой кислоты. В перечисленных объектах аскорбиновой кислоты находится как в восстановленной, так и в окисленной форме (дегидроаскорбиновая кислота), которая может образоваться, например, при обработке и хранении пищевых продуктов. Поэтому ее также необходимо определять.

Основные этапы определения аскорбиновой кислоты следующие:

1) получение материала;

2) хранение полученного материала;

3) экстрагирование аскорбиновой кислоты из образца;

4) освобождение полученного экстракта от примесей, мешающих определению аскорбиновой кислоты;

5) определение количества аскорбиновой кислоты.

Аскорбиновая кислота легко разрушается, и поэтому обеспечение ее сохранности весьма существенно для любого метода исследования. Разрушение аскорбиновой кислоты усиливается под влиянием солнечного освещения, аэрации, повышения температуры и увеличения pH среды. Чем меньше содержание аскорбиновой кислоты в анализируемом объекте, тем больше трудностей при ее определении. Некоторые из методов, например, определение аскорбиновой кислоты в крови и моче, имеют ценность для распознавания степени обеспеченности организма человека аскорбиновой кислотой. При взятии материала из исследуемого объекта необходимо создать условия для максимального сохранения аскорбиновой кислоты в полученной пробе.

Например, исследуя кровь, нужно взять ее без гемолиза. При необходимости нужно создать такие условия хранения материала, которые уменьшают или исключают инактивацию аскорбинвой кислоты (холод, добавление консервантов и т. д.). Экстрагирование проводят при pH не менее 4, предварительном связывании ионов металлов, катализирующих окисление аскорбиновой кислоты, и инактивации ферментов, окисляющих аскорбиновую кислоту. Для экстрагирования применяют растворы уксусной, трихлоруксусной, щавелевой и метафосфорной кислот. Наиболее предпочтительна 5—6% метафосфорная кислота, хорошо стабилизирующая

Аскобиновая кислота, осаждающая белки и инактивирующая в сырых растительных объектах фермент аскорбиназу. Освобождение от примесей, мешающих определению, проводят с помощью осаждения последних, а также с использованием различных методов хроматографии (на бумаге тонкослойной, ионообменной).

Для количественного определения содержания аскорбиновой кислоты в биологических материалах предложен ряд методов. Так, определение аскорбиновой кислоты в моче проводят методом Тилльманса, в основе которого лежит способность аскорбиновой кислоты восстанавливать некоторые вещества, в частности 2,6-дихлорфенолиндофенол. Для этого анализируемую пробу титруют 0,001 н. раствором натриевой соли 2,6-дихлорфенолиндофенола до прекращения обесцвечивания окраски раствора. Этот же принцип лежит в основе определения аскорбиновой кислоты в плазме крови (см. Фармера-Абт метод). При количественном определении в лейкоцитах применяют метод Бессея (см. Бессея методы). Метод достаточно точен и требует для анализа крайне незначительного количества биологического материала (0,2 мл цельной крови).

При исследовании продуктов, содержащих так называемые редуктоны, которые вступают в соединение с 2,6-дихлорфенол индофенол ом (сиропы, компоты, сушеные овощи, фрукты и др.), лучше всего применять обработку экстракта формальдегидом [Шиллингер (A. Schillinger), 1966]. При анализе объектов, содержащих естественные пигменты (красители), чаще применяют титрование 2,6-дихлорфенолиндофенолом в присутствии органического растворителя (хлороформа, ксилола, изоамил ацетата и др.), экстрагирующих избыток красителя. При определении аскорбиновой кислоты в окрашенных фруктовых и ягодных соках применяют амперометрическое титрование. Конечную точку титрования аскорбиновой кислоты 2,6-дихлорфенолиндофенолом определяют по изменению потенциала — потенциометрически [Харрис, Марсон (L. J. Harris, L. W. Marson) и др., 1947] либо по появлению поляризационного тока — амперометрически [Харлампович, Возньяк (Z. Charlampowicz, W. Woznjak) и др., 1969]. Этот метод достаточно точен.

Для определения дегидроаскорбиновой кислоты ее восстанавливают в аскорбиновую кислоту с последующим титрованием 2,6-дихлорфенол индофенол ом. Для восстановления применяют сероводород [Тилльманс (J. Tillmans) и др., 1932]. Однако сероводород не полностью восстанавливает дегидроаскорбиновую кислоту. Лучшие результаты получают при ее восстановлении сульфгидрильными соединениями (гомоцистеин, цистеин, 2,3-димеркаптопропанол).

Кроме биологического и окислительно-восстановительных методов определения аскорбиновой кислоты, используют методы, которые основаны на цветных реакциях с аскорбиновой кислотой или продуктами ее окисления.

Этими методами проводят определение аскорбиновой кислоты, дегидроаскорбиновой и дикетогулоновой кислот. Наиболее распространен метод, предложенный в 1948 году Роу (J. Н. Roe) и другими, с применением 2,4-динитрофенил гидразина. Дикетогулоновая кислота, получаемая в ходе анализа при окислении дегидроаскорбиновой кислоты, образует озазоны, имеющие оранжевую окраску. Озазоны растворяют в кислотах (серной, уксусной и смесях соляной и фосфорной кислот) и с помощью фотоколориметрирования измеряют оптическую плотность растворов. Наилучшие условия: температура раствора 37°, время проведения реакции — 6 часов.

Определение аскорбиновой кислоты проводится также с использованием меченых изотопов, флюориметрическим методом и др.

Аскорбиновая кислота в синтетических препаратах определяется титрованием 0,1 н. раствора йодата калия, 1 мл которого эквивалентен 0,0088 г аскорбиновой кислоты.


Библиография: Витамины в питании и профилактика витаминной недостаточности, под ред. В. В. Ефремова, М., 1969; Гигиена питания, под ред. К. С. Петровского, т. 1, с. 89, М., 1971; Покровский А. А. К вопросу о потребностях различных групп населения в энергии и основных пищевых веществах, Вестн. АМН СССР, № 10, с. 3, 1966, библиогр.; Modern nutrition in health and disease, ed. by M.G. Wohl a.R.S. Goodhart, p. 346, Philadelphia, 1968; The vitamins, ed. by W. H. Sebrell a. R. S. Harris, v. 1, N. Y.— L., 1967; Wagner A. F. a. Fоlkers K. A. Vitamins and coenzymes, N. Y., 1964.

Методы определения А. κ.— Биохимические методы исследования в клинике, под ред. А. А. Покровского, с. 469, М., 1969; Методическое руководство по определению витаминов A, D, E, Bt, В2, Вв, РР, С, Р и каротина в витаминных препаратах и пищевых продуктах, под ред. Б. А. Лаврова, с. 99, М., 1960; Степа-нова E. Н. и Григорьева М. П. Методы определения аскорбиновой кислоты в пищевых продуктах, Вопр. пит., т. 30, № 1, с. 56, 1971; Harris L. J. a. Mapson L. W. Determination of ascorbic acid in presence of interfering substances by «continuousflow» method, Brit. J. Nutr., v. 1, p. 7, 1947; R о e J. H. a. o. The determination of diketo-l-gulo-nic acid, dehydro-l-ascorbic acid, and 1-ascorbic acid in the same tissue extract by the 2,4-dinitrophenylhydrazine method, J. biol. Chem., v. 174, p. 201,1948; T i 1 1-mansJ., Hirsch P. a. SiebertF. Das Reduktionsvermögen pflanzlicher Lebensmittel und seine Beziehung zum Vitamin C. Z. Lebensmitt.-Untersuch., Bd 63, S. 21, 1932.



Популярные статьи

Источник: Большая Медицинская Энциклопедия (БМЭ), под редакцией Петровского Б.В., 3-е издание

Поделиться: